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It’s difficult to directly detect strings in the LHC, but ...

• For phenomenology:
That’s all we know ——string theory only has a perturbative definition.
Sj1...jn(k1, . . . , kn)

=
∑

topology

∫
[dXdg ]

Vdiff×Weyl
exp(−SX − λχ)

n∏
i=1

∫
d2σig(σi)

1/2Vji (ki , σi)

• For historians:
The first formula in string theory was the Veneziano amplitude, which
describes the scattering of four tachyons.

SD2(k1; k2; k3; k4) =
2ig2

0

α′ (2π)26δ26(
∑

i
ki)

× [B(−αo(s),−αo(t)) + B(−αo(s),−αo(u)) + B(−αo(t),−αo(u))]
Where, αo(x) := α′x + 1

Bufan Zheng Department of Physics, University of Tokyo
An Introduction to Pure Spinor Formalism with application to Tree-Level String Amplitudes 4 / 59



Why amp? Why PS? PS superstring Disk amp BCJ numerator Comments Appendix References

• For QFT experts:
As α′ goes to 0, string theory reduces to QFT, making it a powerful tool
for understanding QFT amplitudes. Such as KLT relation [KLT86]:

Mn ∼
∑

ρ,τ∈Sn−3

An

(
1, ρ, n − 1, n|α

′

4

)
Sα′(ρ|τ)Ãn

(
1, τ, n, n − 1|α

′

4

)
This relation implies a squaring structure, Agrav ∼ A2

YM. Furthermore,
the prescription for calculating string amplitudes by integration over
Riemann surfaces inspired the development of the CHY formalism in
QFT [CHY14b; CHY14a]:

An =

∫
M0,n

dµnICHY, dµn :=
dnσ

volSL(2,C)
∏

a

′δ

∑
b ̸=a

sab
σab


This formulation expresses QFT amplitudes in a universal language,
where the dynamics of different theories are encoded solely in the inte-
grand ICHY.
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• For mathematician:
Recent research has revealed that string theory amplitudes can be re-
garded as generating functions for number-theoretic functions, such as
Multiple Zeta Values, thereby establishing a connection to number the-
ory [Bro+14].
For example, the tree-level 4-point gauge boson amplitude:

A(1234) = AYM(1234)
Γ(1− 2α′s12)Γ(1− 2α′s23)
Γ(1− 2α′s12 − 2α′s23)

= exp
( ∞∑

n−2

ζn
n (2α′)n [sn

12 + sn
23 − (s12 + s23)n]

)
=1− (2α′)2ζ2s12s23 + (2α′)3ζ3s12s23s13

− (2α′)4ζ4s12s23
(

s212 +
1

4
s12s23 + s223

)
− (2α′)5ζ2ζ3s212s223s13 +

1

2
(2α′)5ζ5s12s23s13(s212 + s223 + s213) + O(α′6)
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To incorporate SUSY into string theory, it can be introduced either on the
worldsheet or in the target spacetime.
• On the worldsheet: RNS formalism

SRNS =
1

2π

∫
d2z

(
2

α′∂Xµ∂Xµ + ψµ∂ψµ + ψ
µ
∂ψµ

)
+ Sgh

What is truly desired is target spacetime supersymmetry, which remains hid-
den in the RNS formalism. This can be made manifest through the GSO
projection.
It’s easy to construct string spectrum by canonical quantization:

Type IIA Type IIB

m2 = 0

|α;−〉R ⊗ |α; +〉R

ψ̃i
−1/2|0〉NS ⊗ ψj

−1/2|0〉NS

ψ̃i
−1/2|0〉NS ⊗ |α; +〉R

|α̇;−〉R ⊗ ψi
−1/2|0〉NS

|α; +〉R ⊗ |α; +〉R

ψ̃i
−1/2|0〉NS ⊗ ψj

−1/2|0〉NS

ψ̃i
−1/2|0〉NS ⊗ |α; +〉R

|α; +〉R ⊗ ψi
−1/2|0〉NS
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It is also straightforward to construct vertex operators via the state operator
correspondence. For example, considering the bosonic part.

αµ
−m → i

(
2

α′

)1/2 1

(m − 1)!
∂mXµ(0), |0; k〉 → eik·X(0,0)

The vertex operators relevant for tree-level amplitudes are listed below:

U(−1)(z) = ϵµψ
µ(z)e−ϕ(z)eik·X(z), U(− 1

2
)(z) = uαSα(z)e−

1
2
ϕ(z)eik·X(z)

Other two vertex operators with different picture number can be constructed
via Picture Changing Operator (PCO). You can find them in the appendix.
Moreover, the relationship between unintegrated and integrated vertex oper-
ators is very simple in the RNS formalism:

V (z) = c(z)U(z) (1)
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• On the target Spacetime: GS formalism

SGS =
1

π

∫
d2z

[
1

2
ΠmΠm +

1

4
Πm(θγ

m∂θ)− 1

4
Πm(θγ

m∂θ)

]
Comparing to RNS formalism, we know how to couple GS superstring with
R-R flux. Actually, we can write down more general D brane action in GS
formalism:

SDp = −TDp

∫
dp+1σ

√
− det(Gαβ + kFαβ) + SCS

However, it is very difficult to covariantly quantize the GS superstring, we can
only quantize it in the light-cone gauge. The reasons for this are explained
using a simple toy model in the appendix. Since our spacetime is required
to be SR covariant, it can be anticipated that performing calculations within
the GS formalism is rather challenging.
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Siegle’s idea

To solve the problem related to GS superstring, Siegle introduced a new
independent Grassmann odd variable p, proposed a modified action: [Sie86]

SSiegel =
1

π

∫
d2z

[
1

2
∂Xm∂Xm + pα∂θα

]
+ c.c.

However, this formalism is not equivalent to the RNS formalism. The key
point lies in the fact that their OPEs of the SO(9, 1) Noether currents differ:

Σmn
RNS = −ψmψn, Σmn

Siegel = −1

2
(pγmnθ)

Σmn
RNS(z)Σ

pq
RNS(w) ∼ δp[mΣn]q(w)− δq[mΣn]p(w)

z − w +
δm[qδp]n

(z − w)2

Σmn
Siegel(z)Σ

pq
Siegel(w) ∼ δp[mΣn]q(w)− δq[mΣn]p(w)

z − w + 4
δm[qδp]n

(z − w)2

(2)

Moreover, cSiegle = −22 6= 0. This is not a consistent string theory!
Bufan Zheng Department of Physics, University of Tokyo
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Berkovits’ idea I

Referring to equation (2), although they are different, they exhibit very sim-
ilar forms. Suppose we introduce Grassmann even ghost fields {λα,wα}
conjugate to {pα, θα}. The Lorentz current is then corrected to:

Mµν
PS = Σµν

Siegle + Nµν
gh

If Nµν
gh satisfy the OPE below, and cλ = 22, the problem is resolved: [Ber00]

Nµν(z)Nρσ(w) ∼ δρ[µNν]σ(w)− δσ[µNν]ρ(w)

z − w − 3
δm[σδρ]ν

(z − w)2

Σµν(z)Nρσ(w) ∼ regular

After tedious calculation, Berkovits proposed pure spinor superstring action:

SPS =
1

π

∫
d2z

(
1

2
∂Xm∂Xm + pα∂θα − wα∂λ

α

)
+ c.c., λγµλ = 0
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Berkovits’ idea II

With following OPE relations: (because PS constraint, w , λ ghost is not a
free CFT.1 i.e. wα(z)λβ(w)≁ δβα

z−w )

Xµ(z , z)X ν(w ,w) ∼ −ηµν ln |z − w |2, dα(z)θβ(w) ∼ δβα
z − w ,

dα(z)dβ(w) ∼ −
γµαβΠµ(w)

z − w , dα(z)Πµ(w) ∼ (γµ∂θ(w))α
z − w ,

Πµ(z)Πν(w) ∼ − ηµν

(z − w)2
, dα(z)K ∼ DαK

z − w , Πm(z)K ∼ − ∂mK
z − w

Dα =
∂

∂θα
+

1

2
(γµθ)α∂µ, Πm = ∂Xm +

1

2
(θγm∂θ)

dα = pα − 1

2

(
∂Xm +

1

4
(θγm∂θ)

)
(γmθ)α

1We can use U(5) decomposition of SO(10) to obtain a free CFT, but it’s too technical
to include here, even in the appendix ...
Bufan Zheng Department of Physics, University of Tokyo
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The vertex operators

To obtain the vertex operators, BRST quantization is the best approach:

QB :=

∮
dz(λαdα)

Q2
B=0

=⇒ λγµλ = 0 (PS constraint)

The vertex operator for massless (open string) excitations can be straight-
forwardly constructed by computing the BRST cohomology:

U(z) = ∂θαAα(X , θ) + Am(X , θ)Πm + dαW α(X , θ) + 1

2
NmnF mn(X , θ)

V (z) = λαAα(X , θ), {Aα/m,W α,F mn} (a.k.a. K ) ∈ 10D SYM
Details on the 10D SYM superfields are provided in the appendix. These
operators can then be used to compute disk amplitudes:

A(P) =

∫
D(P)

dz〈〈V1(ẑ1)U2(z2) . . .Un−2(zn−2)Vn−1(ẑn−1)Vn(ẑn)〉〉 (3)

A simple example can be found in the appendix.
Bufan Zheng Department of Physics, University of Tokyo
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Pure spinor formalism vs. RNS formalism (Cons)

• Non-trivial relation between U and V .

PS: ∂V (z) = QBU(z), RNS: V (z) = c(z)U(z)
• More complicated vertex operators. Unintegrated vertex operator for

the first massive level α′m2 = 1 was found in 2002 [BC02]

V = ∂λαAα(x , θ)+ : ∂θβλαBαβ(x , θ) : + : dβλαCβ
α (x , θ) :

+ : ΠmλαHmα(x , θ) : + : JλαEα(x , θ) : + : NmnλαFαmn(x , θ) :

But, it was not until 2018 that the integrated vertex operator was ex-
plicitly constructed[CKV18]:

U =: ΠmΠnFmn : + : ΠmdαFα
m : + : Πm∂θαGmα : + : ΠmNpqFmpq :

+ : dαdβKαβ : + : dα∂θβFα
β : + : dαNmnGα

mn : + : ∂θα∂θβHαβ :

+ : ∂θαNmnHmnα : + : NmnNpqGmnpq :

Bufan Zheng Department of Physics, University of Tokyo
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Pure spinor formalism vs. RNS formalism (Cons)

Where,

Fmn = −
18

α′ Gmn,

Fmpq =
12

(α′)2
Bmpq −

36

α′ ∂[pGq]m,

Fα
β = −

4

α′ (γ
mnpq)αβ ∂mBnpq ,

Hαβ =
2

α′ γ
mnp
αβ Bmnp ,

Gmnpq =
4

(α′)2
∂[mBn]pq +

4

(α′)2
∂[pBq]mn −

12

α′ ∂[p∂[mGn]q]

Fm
α =

288

α′ (γr )αβ∂rΨmβ , Gmα = −
432

α′ Ψmα

Kαβ = −
1

(α′)2
γαβ

mnpBmnp ,

Gα
mn =

48

(α′)2
γασ

[mΨn]σ +
192

α′ γασ
r∂

r∂[mΨn]σ ,

Hmnα = −
576

α′ ∂[mΨn]α −
144

α′ ∂q((γq[m) α
σΨn]σ

)
,

To handle these complex formulae, several new techniques have been devel-
oped recently [Kas+25][Maf24].
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Pure spinor formalism vs. RNS formalism (Pros)

• Powerful in amplitude calculations. Compared to the hundred-page com-
putation of the four-point two-loop amplitude in the RNS formalism
[DP05], the pure spinor formalism requires only a ten-page calculation
[Ber06]. The results were shown to be equivalent [BM06].
Note: It’s still not clear how to deal with subtleties about multiloop
(ℓ ≥ 3) amplitudes.

• The amplitudes are manifestly SUSY and Lorentz invariant. The pure
spinor formalism computes super-amplitudes directly, whereas the RNS
formalism only calculates their components.

• String in R-R backgrounds can be described by PS formalism. Since
the pure spinor formalism manifest spacetime supersymmetry, it can, in
principle, be used to analyze superstrings in AdS backgrounds[BC01].
For further discussion, see Comments.
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Compute OPEs (n = 2) I

The challenge involves computing OPEs between vertex operators, e.g. for
2 points:

V1(z1)U2(z2) ∼ z−k1·k2
12

L12(z2)
z12

, L12 := −Am
2 (λγmW1)− V2(k2 · A1) + QB(A2W1)

U1(z1)U2(z2) ∼ z−k1·k2−1
12

(
∂θα

[
(k1 · A2)A1

α − (k2 · A1)A2
α + DαA2

βW β
1 − DαA1

βW β
2

]
+Πm

[
(k1 · A2)A1

m − (k2 · A1)A2
m + k2

m(A2W1)− k1
m(A1W2)− (W1γmW2)

+ dα

[
(k1 · A2)Wα

1 − (k2 · A1)Wα
2 +

1

4
(γmnW1)

αF2
mn −

1

4
(γmnW2)

αF1
mn

]
+

1

2
Nmn

[
(k1 · A2)F1

mn − (k2 · A1)F2
mn − 2k12

m (W1γnW2) + 2F1
maF2

na

])
+ (1 + k1 · k2)z−k1·k2−2

12 [(A1W2) + (A2W1)− (A1 · A2)]

The plane wave factors : eik·X : are dropped. Their contribution is restored
via the Koba-Nielsen factors in the final amplitudes.
Bufan Zheng Department of Physics, University of Tokyo
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Compute OPEs (n = 2) II

Surprisingly, if we define:

A12
α =

1

2

[
A2
α(k2 · A1) + Am

2 (γmW1)α − (1 ↔ 2)
]

Am
12 =

1

2

[
Am
2 (k2 · A1) + A1

pF pm
2 + (W1γ

mW2)− (1 ↔ 2)
]

W α
12 =

1

4
(γmnW2)

αF mn
1 + W α

2 (k2 · A1)− (1 ↔ 2)

F mn
12 = F mn

2 (k2 · A1) +
1

2
F [m
2 F n]p

1 + k [m
1 (W1γ

n]W2)− (1 ↔ 2)

After dropping some BRST-exact or total derivative terms:

U1(z1)U2(z2) ∼
U12(z2)

z12
, V1(z1)U2(z2) ∼

V12(z2)
z12

Here U12 and V12 is defined by replacing superfields Kα with multi-particle
superfields K 12

α .
Bufan Zheng Department of Physics, University of Tokyo
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Compute OPEs (n ≥ 2)

This rule generalizes to higher points using Lie polynomial notation:
U[[1,2],3] ↔ ((U1U2)U3), U[[1,2],[3,4]] ↔ ((U1U2)(U3U4))

The game continues:

VA(za)UB(zb) ∼
V[A,B](zb)

zab
, UA(za)UB(zb) ∼

U[A,B](zb)

zab

In Lorentz gauge ∂ · AP = 0: [LMS16]

Â[P,Q]
α =

1

2

[
ÂQ
α(kQ · ÂP) + ÂQm(γmŴP)α− (P ↔ Q)

]
Âm
[P,Q] =

1

2

[
Âm

Q(kQ · ÂP) + ÂP
n F̂ nm

Q + (ŴPγ
mŴQ)− (P ↔ Q)

]
Ŵ α

[P,Q] =
1

4
F̂ rs

P (γrsŴQ)
α +

1

2
(kQ · ÂP)Ŵ α

Q +
1

2
Ŵ mα

Q ÂP
m − (P ↔ Q)

F̂ mn
[P,Q] =

1

2

[
F̂ mn

Q (kQ · ÂP) + F̂ p|mn
Q Âp

p + F̂ [m
Q F̂ n]r

P − 2γ
[m
αβŴ n]α

P Ŵ β
Q − (P ↔ Q)

]
Bufan Zheng Department of Physics, University of Tokyo
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Compute OPEs (n ≥ 2)

This rule generalizes to higher points using Lie polynomial notation:

U[[1,2],3] ↔ ((U1U2)U3), U[[1,2],[3,4]] ↔ ((U1U2)(U3U4))

The game continues:

VA(za)UB(zb) ∼
V[A,B](zb)

zab
, UA(za)UB(zb) ∼

U[A,B](zb)

zab

These rules allow reducing OPEs to three-point functions like
〈
V 3
〉

e.g.:

V1(z1)U2(z2)V3(z3)V4(∞) = V 1U2V3V4 + V1U2V 3V4 + V1U2V3V 4

∼=
V[1,2](z1)

z12
V3(z3)V4(∞) + V1(z1)

V[2,3](z3)
z23

V4(∞)

∼=
V12V3V4

z12
+

V1V32V4

z32
Bufan Zheng Department of Physics, University of Tokyo
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Final result

Using wick contraction to reduce n-pt function:2[MSS13a][MSS13b]

An(P) = (2α′)n−3

∫
dµn

P
∑

AB=23...n−2

⟨(V1AZ1A)(V(n−1)B̃Zn−1,B̃)Vn⟩+ perm (4)

Z123···p :=
1

z12z23 · · · zp−1,p
,

∫
dµn

P :=

∫
D(P)

dz2dz3 · · · dzn−2

n−1∏
1≤i<j

|zij |−2α′sij

We can use SL(2,C) invariance to fix {z1, zn−1, zn} to {0, 1,∞} or {0,∞, 1},
depending on the ordering P. Here, 〈· · · 〉 denotes integration over the ghost
fields λ, θ with the measure

〈
λ3θ5

〉
= 2880.3 This calculation is feasible,

and further details can be found in [MS23]. The connection with the free
Lie algebra is also discussed.

2We use the Dynkin bracket notation, VP := Vℓ(P), ℓ(123 . . . n) := [ℓ(123 . . . n − 1), n]
3See the appendix regarding the computation of the three-point amplitude.
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The relation between 10D SYM amplitudes

Open string amplitudes α′→0−−−→ 10D SYM amplitudes:

An(P) = (2α′)n−3

∫
dµn

P

[n−2∏
k=2

k−1∑
m=1

smk
zmk

AYM
n (1, 2, . . . , n) + perm(2, 3, . . . , n − 2)

]
P={1,R,n−1,n}===========

∑
Q∈Sn−3

FR
Q(α′)AYM

n (1,Q, n − 1, n)

Where, sij := pi · pj and,

FR
Q(α′) :=(2α′)n−3

∫
dµn

R
s1q2

z1q2

(
s1q3

z1q3

+
sq2q3

zq2q3

)
×
(

s1q4

z1q4

+
sq2q4

zq2q4

+
sq3q4

zq3q4

)
×
( s1qn−2

z1qn−2

+
sq2qn−2

zq2qn−2

+ · · ·+
sqn−3qn−2

zqn−3qn−2

)
α′→0−−−→ δR

Q

Its α′-expansion is related to Drinfield associator, generating series of MZVs,
as mentioned in Sec. 1.
Bufan Zheng Department of Physics, University of Tokyo
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SYM tree amplitudes from the cohomology of pure spinor superspace I

SYM tree amplitudes can be rewritten in PS language: [Maf+11]

AYM
n (P, n) =

∑
XY=P

〈MX MY Mn〉

Here, MP is called the Berends–Giele current4, its exact definition can be
found in [MS23]. After integrating out zero modes:

〈MX MY MZ 〉 =
1

2
em
X f

mn
Y en

Z + (XXγmXY )em
Z + cyc(XYZ )

em
P =

1

sP

∑
XY=P

em
[X ,Y ], em

[X ,Y ] :=
1

2

[
em

Y (kY · eX ) + eX
n f

nm
Y + (XXγ

mXY )− (X ↔ Y )
]

Xα
P =

1

sP

∑
XY=P

Xα
[X ,Y ] Xα

[X ,Y ] :=
1

2
(kp

X + kp
Y )γ

αβ
p [em

X (γmXY )β − em
Y (γmXX )β ]

fmn
P := km

P en
P − kn

Pe
m
P −

∑
XY=P

(em
X e

n
Y − en

X e
m
Y ), en

1 := en
1 , Xn

1 := χn
1
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SYM tree amplitudes from the cohomology of pure spinor superspace II

This gives a new recursive formula for SYM tree amplitudes, fully constructed
via a stringy approach. Moreover, as discussed in [Bad+13] and [GSW11],
Berends–Giele currents lead to fast numerical evaluation of amplitudes.
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Numerical precision of N gluon amplitudes

In this representation of SYM amplitudes, relations among color-ordered par-
tial amplitudes such as Kleiss–Kuijf and BCJ relations can also be easily
derived using Ree’s theorem from free Lie algebra.[FMM23]

4The original concept of the BG current comes from off-shell recursion relations of YM
amplitudes.[BG88]
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Color-Kinematic duality: trivalent encoding

The full color-dressed n-point tree amplitude of Yang–Mills theory can be
conveniently organized in terms of diagrams with only cubic vertices:

An =
∑
i∈Γn

ciNi
Di

Tips: Why cubic vertices only?

2

41

3

∼ (k1 + k2)
2

(k1 + k2)2

2

41

3

∼ (k1 + k2)
2

1

2 3

4

(1)

1

The propagators {Di} and color factors {ci} are straightforward to obtain
from the diagrams. However, constructing the kinematic numerators {Ni} is
non-trivial.
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Color-Kinematics duality: BCJ numerators

[BCJ08] showed that there exists a representation in which the kinematic
numerators {Ni} obey the same algebraic relations as the color factors {ci}:C.R. Mafra and O. Schlotterer Physics Reports 1020 (2023) 1–162

Fig. 6. Triplets of cubic graphs whose color factors ci and kinematic factors Ni are both related by a Jacobi identity if the duality between color and
kinematics is manifest. The dotted lines at the corners represent arbitrary tree-level subdiagrams and are understood to be the same for all of the
three cubic graphs.

Kinematic Jacobi identities. For all triplets of cubic diagrams i, j, k ∈ Γn that share all propagators except for one, see Fig. 6,
the Jacobi identity (7.2) implies that the associated color factors obey ci + cj + ck = 0. According to the color-kinematics
duality, one can choose the numerators Nl in (7.1) such that the kinematic Jacobi identity Ni + Nj + Nk = 0 holds for each
such triplet i, j, k. Moreover, the antisymmetry f abc = f [abc] implies that color factors ci change their sign upon flipping
any of the cubic vertices. Kinematic numerators with manifest color-kinematics duality are understood to also change
Ni → −Ni under flips of cubic vertices in diagram i. In other words,

manifest color-kinematics duality :

{
ci + cj + ck = 0 H⇒ Ni + Nj + Nk = 0 ∀ i, j, k ∈ Γn ,

ci → −ci H⇒ Ni → −Ni ∀ i ∈ Γn .
(7.3)

Examples up to four points. The three-point instance of the gauge-amplitude parameterization (7.1) in ten-dimensional
SYM reduces to a single diagram without any propagators Di → 1, with color factor ci → f 123 and kinematic numerator

Ni → ⟨V1V2V3⟩ = (e1 · k2)(e2 · e3) + em1 (χ2γmχ3) + cyc(1, 2, 3) . (7.4)

Here and below, we use the shorthand ai → i for the adjoint indices of the ith external state, e.g. write f 123 in the place
of f a1a2a3 .

The first instance of quartic-vertex contributions arises at four points. The parameterization (7.1) comprises three
diagrams in the s-, t- and u-channel associated with inverse propagators s = s12, t = s23 and u = s13 = −s − t ,

Mgauge
4 =

Nscs
s

+
Ntct
t

+
Nucu
u

. (7.5)

The color factors are indexed by the relevant channel, and their Jacobi identity literally matches (7.2)

cs = f 12af a34

ct = f 23af a14

cu = f 31af a24

⎫⎬⎭ H⇒ cs + ct + cu = 0 . (7.6)

One admissible choice of numerators in ten-dimensional SYM reads

Ns = ⟨V12V3V4⟩ , Nt = ⟨V23V1V4⟩ , Nu = ⟨V31V2V4⟩ , (7.7)

and they obey the kinematic Jacobi identity by BRST exactness of [170]

Ns + Nt + Nu = ⟨(V12V3 + V23V1 + V31V2)V4⟩ = −
1
s12

⟨Q (V123V4)⟩ = 0 (7.8)

using (4.72) and s13 + s23 = −s12 in the momentum phase space of four massless particles. Still, any other choice of
{Ns,Nt ,Nu} besides (7.7) that yields the same amplitude (7.5) will obey kinematic Jacobi identities: this can be seen by
adding 0 = K ( scss +

tct
t +

ucu
u ) to Mgauge

4 with an arbitrary kinematic factor K which modifies the numerators in (7.5) by
δNs = sK , δNt = tK and δNu = uK . The modification to the triplet in the kinematic Jacobi identity (7.8) then vanishes by
momentum conservation,

δ(Ns + Nt + Nu) = K (s + t + u) = 0 . (7.9)

Examples at five points. At five points, the cubic-diagram parameterization (7.1) involves 5!! = 15 terms

Mgauge
5 =

N12|3|45c12|3|45
s12s45

+
N14|3|25c14|3|25

s14s25
+

N15|3|24c15|3|24
s15s24

+ cyc(1, 2, 3, 4, 5) (7.10)

with color factors cab|d|gh = f abif idjf jgh subject to Jacobi identities cab|[d|gh] = c[ab|d]|gh = 0. However, generic choices of
kinematic numerators Nab|d|gh – say a naive Feynman-diagram computation or a crossing symmetric choice Nab|d|gh →

⟨VabVdVgh⟩ – will fail to obey kinematic Jacobi identities even though they yield the correct color-dressed amplitude (7.10).

83

i.e., both satisfy the Jacobi identity, as well as anti-symmetry. These special
(but not unique) kinematic numerators are known as BCJ numerators.

At tree level, BCJ numerators can be constructed through various meth-
ods, you will encounter a stringy approach later. While this duality is conjec-
tured to hold at loop level based on substantial evidence, a complete proof
remains an open problem.
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Double copy relations

More exciting, once this is imposed, gravity amplitudes are obtained using
two copies of gauge theory BCJ numerators: [BCJ10]

Agauge
n =

∑
i∈Γn

ciNi
Di

Tree ∃{Ni}BCJ ✓==========⇒
Loop ∃{Ni}BCJ ?

Mgravity
n =

∑
i∈Γn

NiNi
Di

=
∑
i∈Γn

Ni Ñi
Di

Here, Ni 6= Ñi indicates that the BCJ numerators for the "left-moving"
and "right-moving" gauge theories need not be identical. In fact, the KLT
relations serve as a specific realization of the double copy progaram, enabling
the construction of BCJ numerators for tree-level YM theory.[Car15]

However, this remains a conjecture at the loop level and has not been
proven untile now. By the way, this property is not an accident of few
very special theories, but extends to large classes of gravitational and non-
gravitational theories. More details can be fund in [Ber+24].
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Web of double copy constructible theories5 A WEB OF DOUBLE-COPY-CONSTRUCTIBLE THEORIES

Figure 17: Schematic rendition of the web of theories. Nodes represent the main double-copy-
constructible theories discussed in this section, which include gravitational theories (rectangular
nodes), string theories (oval nodes) and non-gravitational theories (octagonal nodes). Undirected
links are drawn between theories that have a common gauge-theory factor in their construction
(different gauge-theory factors correspond to different colors). Directed links connect theories
obtained by modifying/deforming both gauge-theory factors (e.g. adding matter, assigning VEVs).
Details are given throughout Sec. 5.3.

5 A web of double-copy-constructible theories
As we have seen in the previous sections, the duality between color and kinematics and
the double-copy construction express amplitudes of gravitational theories in terms of sim-
pler building blocks from gauge theory. It has become clear that this property is not an
accident of few very special theories, but extends to large classes of gravitational and non-
gravitational theories. Seemingly unrelated theories have been shown to share—and thus
be connected by—the same set of building blocks, yielding a “web of theories” which can
be analyzed with double-copy methods (see Fig. 17). In this section, we aim to probe this
web more in detail. Particularly prominent results will be the classification of homogeneous
N = 2 Maxwell-Einstein supergravities [282], which can be reproduced and streamlined
by double-copy methods, the double-copy construction for YME [120, 125, 257, 283] and
gauged supergravities [123, 284], and the construction for Dirac-Born-Infeld (DBI) theories

60
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Del-Dixon-Maltoni basis I

Using Jacobi identity, AYM can be expanded in "half-ladder" basis: [DDM00]

Agauge
n =

∑
σ∈Sn−2

c1|σ1···σn−2|n︷ ︸︸ ︷
f a1aσ1b1 f b1aσ2b2 · · · f bn−3aσn−2

an An(1, σ1, σ2, . . . , σn−2, n)

Color Decomposition

DDM Basis
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Del-Dixon-Maltoni basis II

As discussed in appendix, Agauge
n can be rewritten by using partial amplitudes

of trϕ3 theory, m(P|Q), in DDM basis.

Agauge
n =

∑
P,Q∈Sn−2

c1|P|nm(1,P, n|1,Q, n)N1|Q|n

⇒Agauge
n (P) =

∑
Q∈Sn−2

N1|Q|n−1m(P|1,Q, n − 1)
(5)

Since in the DDM basis, N1|Q|n are independently of each other, they cannot
be related through Jacobi identities. If Agauge

n can be organized in the form
above, then the BCJ numerators are naturally constructed. We will see that
this is straightforward in the pure spinor formalism.
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Construct BCJ numerators I

To factor out all the α′ dependence, the n-point open string amplitude (4)
can be reorganized in terms of Z -integral:

An(P) =
∑

AB=23···n−2

〈V1AV(n−1)B̃Vn〉(−1)|B|−1Z (P|1,A, n,B, n − 1)+ perm

Z (P|Q) := (2α′)n−3

∫
D(P)

dz1dz2 · · · dzn
vol(SL2(R))

n∏
i<j

|zij |−2α′sij PT(Q)

P(1, 2, · · · , n) := 1

z12z23 . . . zn−1,nzn,1
=

1

zn,1
Z123···n

Only one final step remains: taking the α′ → 0 limit, one can show that,

lim
α′→0

Z (P|Q) = m(P|Q), An(P)string → An(P)gauge
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Construct BCJ numerators II

Thus, the open string amplitude reduces to:

An(P)string α′→0−−−→
∑

AB=23···n−2

〈V1AV(n−1)B̃Vn〉(−1)|B|−1m(P|1,A, n,B, n−1)+perm

Recalling the expression in the DDM basis (5):

Agauge
n (P) =

∑
Q∈Sn−2

N1|Q|n−1m(P|1,Q, n − 1),
∑

Q
⇐⇒

∑
AnB

+perm

we finally obtain:

N1|AnB|n−1 = (−1)|B|−1〈V1AV(n−1)B̃Vn〉

More details can be found in [MSS11].
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Conclusion

• The PS superstring allows covariant quantization with manifest target-
space SUSY

SPS =
1

π

∫
d2z

(
1

2
∂Xm∂Xm + pα∂θα − wα∂λ

α

)
+ c.c.

• Tree-level amplitudes admit a compact representation in PS superspace

An(P) = (2α′)n−3

∫
dµn

P
∑

AB=23...n−2

⟨(V1AZ1A)(V(n−1)B̃Zn−1,B̃)Vn⟩+ perm

AYM
n (P, n) =

∑
XY=P

⟨MX MY Mn⟩

• BCJ numerators can be constructed straightforwardly in the PS formal-
ism*

N1|AnB|n−1 = (−1)|B|−1〈V1AV(n−1)B̃Vn〉
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Some elementary comments on non-trivial target spacetime

PS Supertstring in AdS5 × S5 background can be described by:

SPS =

∫
d2z
[
1

2
JaJ̄bηab +

1

2
(JαJ̄ β̄ − 3J β̄ J̄α)ηαβ̄

+ ωα∇̄λα + ω̄ᾱ∇λ̄ᾱ − 1

2
(NabN̄ab − Na′b′

N̄a′b′)

]
Covariant vertex operators can also be constructed: [CV17]

V =λαλ̄ᾱAαᾱ(g)

U =2ηβγ̄JαJ̄βWα
γ̄ − 2ηγᾱJ ᾱJ̄ β̄W γ

β̄ + JαJ̄ β̄Aαβ̄ + JαJ̄ ᾱAαa − JaJ̄ ᾱAaᾱ

+
1

2
JαN̄abFαab − 1

2
Nab J̄ ᾱFabᾱ + J β̄ J̄αV̄αβ̄ + JaJ̄αV̄aα + J āJ̄aV̄aa + JaJ̄bVab

+
1

4
NabN̄cdVab cd +

1

2
Nab J̄αV̄abα +

1

2
J ᾱN̄abVabᾱ +

1

2
JaN̄bcVa bc +

1

2
Nbc J̄aV̄a bc

These superfields are constrained by very complicated equations, and further
calculation is needed to determine the exact form of U and V .
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The best of three worlds: B-RNS-GSS formalism
PS superstring does not possess world-sheet supersymmetry. Recently the
B-RNS-GSS formalism, which combines the desirable features of three for-
malisms, has attracted considerable attention [Ber21].

SB-RNS-GSS =

∫
d2z

(
1

2
∂Xm∂X m +

1

2
ψm∂ψ

m + b∂c + β∂γ + pα∂θ
α + wα∂Λ

α

)
With the following action in AdS5 × S5 spacetime: [CG24]

S =

∫
d2z
(
1

2
JaJa

+
1

2
ηαα(JαJα

+ JαJα
) + dαJα

+ dαJα − 1

2
ηααdαdα + wα∇Λα

+ wα∇Λ
α
+

1

2
ψa∇ψa +

1

2
ψa∇ψ

a − 1

2
ψawαJα

(ηγa)
α
α +

1

2
ψ

awαJα(γaη)α
α − 1

8
Ja
(wγaw)

− 1

8
Ja(wγaw) +

1

2
N [ab]N [ab] −

1

8
ψaψ

bwαwα(γaγbη)
αα − 1

64
(wγaw)(wγaw)

)
+ Sgh

Unintegrated and integrated vertex operators for massless states were con-
structed in [Cha25], but they are too complicated to include here.
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Thanks!

With Nathan Berkovits and my friend Chen Huang in String-Math
2025.

ありがとうございます
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Vertext operators in RNS formalism I

The missing two vertex operators are:

U(+ 1
2
) =

1√
α′

uα

{
e

1
2
ϕ(i∂Xµ +

α′

8
(k · ψ)ψµ)(Γµ)

β̇
αSβ̇

}
eik·X

U(0) =

√
2

α′ ϵµ

(
i∂Xµ +

α′

2
(k · ψ)ψµ

)
eik·X

By the way, Sα is called spin operator, which represents one of the most
challenging aspects to handle in the RNS formalism.
Indeed, vertex operators connected by a Picture-Changing Operator (PCO)
are physically equivalent, as shown here U(−1) ∼= U(0) and U(− 1

2
) ∼= U(+ 1

2
).

However, when computing tree-level correlation functions of vertex operators,
the total picture number must sum to −2 in order to cancel the contribution
from the background superghost number [BLT13].
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Vertext operators in RNS formalism II

By the way, you may not be fully familiar with unintegrated and integrated
vertex operators. Let me briefly review them. To calculate the string S-
matrix, we need to compute correlation functions of the following form:

S ∼ 1

VCKG

∫
dz1 · · · dzn 〈U1(z1) · · ·Un(zn)〉

We call Ui(zi) the integrated vertex operator, since we must integrate over zi .
However, to gauge-fix the conformal Killing group (VCKG) in tree-level, we
must also fix three points on the sphere. In this case,

∫
dzU(z) at marked

points should be replaced by V (z), the unintegrated vertex operator. In
the RNS formalism, there is a simple relation between U and V , as seen in
equation (1).
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Why can we not quantize GS superstring covariantly? I

To make life easier, let’s consider the massless particle limitation of GS su-
perparicle, known as Brink-Schwarz superparticle:

SBS =

∫
dτ (ΠµPµ + ePµPµ) , Πµ := Ẋµ − 1

2
θ̇αγµαβθ

β

This theory has N = 1 supersymmetry:

δθα = ϵα, δXµ =
1

2
θαγµαβϵ

β , δPµ = δe = 0

Qα := pα − 1

2
γµαβθ

βPµ, pα :=
∂L
∂θ̇α

= −1

2
γµαβθ

βPµ

String theory is a constrained system, much like gauge theory, the worldsheet
energy–momentum tensor must vanish. Similarly, in particle theory, we need
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Why can we not quantize GS superstring covariantly? II

on-shell condition, P2 = 0. Moreover, we introduce two pairs of conjugate
variables: X ,P and p, θ. The latter are not independent. The constraint
between p and θ is:

dα := pα +
1

2
γµαβθ

βPµ = 0

It is straightforward to compute their Poisson brackets:

{dα, dβ}PB = −γµαβPµ

A more careful analysis shows that these constraints consist of 8 first-class
and 8 second-class constraints. Only in light-cone coordinates do these two
classes decouple:

{dα, dβ}PB = −γ−αβP+ ∝

18×8 08×8

08×8 08×8


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Why can we not quantize GS superstring covariantly? III

Dirac’s classification of constraints is a very old concept [Dir13]:
• First class: {d1, d2} = 0

Corresponds to gauge symmetries. Can be eliminated by gauge fixing or
via Gupta–Bleuler quantization: d |phys〉 = 0.

• Seconed class: {d1, d2} 6= 0
Corresponds to redundant degrees of freedom5. Before canonical quan-
tization, Poisson brackets must be replaced by Dirac brackets. The
constraint d = 0 is then treated as a strong operator equation: d̂ = 0.6

Furthermore, GS formalism has an additional gauge symmetry, κ-symmetry:

δθα = Pµγαβµ κβ , δXµ = −1

2
θαγµαβδθ

β , δPµ = 0, δe = θ̇ακα

This symmetry can be fixed in light-cone coordinates, after which the full
theory can be quantized. For further details, see [BG17].

5Such as using (x , y , z) to describe a planar motion.
6Don’t need to act on |phy⟩
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Linearized 10D SYM superfields: equation of motion

In 10D SYM, the physical spectrum contains only gluons Aµ = Aµ(X , θ) and
gluinos Aα = Aα(X , θ), satisfying the following e.o.m:

{∇α,∇β} = γµαβ∇µ, {∇α,∇µ} = −(γµW)α,

{∇α,Wβ} =
1

4
(γµν)α

βFµν , [∇α,Fµν ] = (W[µγν])α

Fµν := − [∇µ,∇ν ] , Wα
µ := [∇µ,Wα]

∇α = Dα − Aα, ∇µ = ∂µ − Aµ, Dα =
∂

∂θα
+

1

2
(γµθ)α∂µ

In the linearized approximation, superfields K 7→ K describe asymptotic
states and satisfy:

DαAi
β + DβAi

α = γµαβAi
µ, DαAi

µ = (γµWi)α + ∂µAi
α,

DαW β
i =

1

4
(γµν)α

βF i
µν , DαF i

µν = ∂[µ(γν]Wi)α
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Linearized 10D SYM superfields: θ-expansion I

In the Harnad–Shnider gauge, θαAα = 0, these equations can be solved
explicitly. The resulting superfields admit a θ-expansion. For pure spinor
computations it suffices to keep terms up to O(θ4):

Ai
α(X , θ) =

{
1

2
(θγm)αem

i +
1

3
(θγm)α(θγ

mχi)−
1

32
(θγm)α(θγmnpθ)f np

i

+
1

60
(θγm)α(θγmnpθ)kn

i (χiγ
pθ) +

1

1152
(θγm)α(θγmnpθ)(θγ

p
qrθ)k

n
i f qr

j + · · ·

}
eki ·X ,

Am
i (X , θ) =

{
em

i + (θγmχi)−
1

8
(θγm

pqθ)f
pq

i +
1

12
(θγm

npθ)k
n
i (χiγ

pθ)

+
1

192
(θγm

nrθ)(θγ
r
pqθ)k

n
i f pq

i − 1

480
(θγm

nrθ)(θγ
r
pqθ)k

n
i kp

i (χiγ
qθ) + · · ·

}
eki ·X ,
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Linearized 10D SYM superfields: θ-expansion II

W α
i (X , θ) =

{
χα

i +
1

4
(θγmn)

αf mn
i − 1

4
(θγmn)

αkm
i (χiγ

nθ)− 1

48
(θγm

q)α(θγqnpθ)km
i f np

i

+
1

96
(θγm

q)α(θγqnpθ)km
i kn

i (χiγ
pθ)− 1

1920
(θγm

r )α(θγnr
sθ)(θγspqθ)km

i kn
i f pq

i + · · ·

}
eki ·X ,

F mn
i (X , θ) =

{
f mn
i − k [m

i (χiγ
n]θ) +

1

8
(θγpq

[mθ)kn]
i f pq

i − 1

12
(θγpq

[mθ)kn]
i kp

i (χiγ
qθ)

− 1

192
(θγps

[mθ)kn]
i kp

i f qr
i (θγs

qrθ) +
1

480
(θγ[m

psθ)k
n]
i kp

i kq
i (χiγ

rθ)(θγs
qrθ) + · · ·

}
eki ·X .

Here we use the convention ik 7→ k to get rid of i =
√
−1. Moreover,

f µνi := kµ
i eνi − kν

i eµi

em is the polarization vector for boson and χα is the wavefunction of fermion.
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3-pt amplitude I

To compute the disk amplitudes (3), we encounter nested correlators. The
inner correlator is handled by OPEs, which reduce the double bracket to 〈V 3〉.
The remaining step is to integrate over zero modes. The 3-point amplitude
is chosen here because it receives no OPE contributions and is determined
entirely by the zero modes of λα and θα.

A(1, 2, 3) = 〈V1V2V3〉 = 〈(λA1)(λA2)(λA3)〉
= A(1b, 2b, 3b) +A(1b, 2f , 3f ) +A(1f , 2b, 3f ) +A(1f , 2f , 3b)

The second equality shows that in the PS formalism we compute superam-
plitudes directly, and the components must then be extracted by hand.
To evaluate the outer bracket, we use the following PS superspace measure:

(λ3θ5) := (λγmθ)(λγnθ)(λγpθ)(θγmn�θ),
〈
(λ3θ5)

〉
= 2880 (6)
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3-pt amplitude II

Note: The value 2880 is conventional, it can be absorbed into the definition
of the string coupling, so any choice is acceptable.
Next, we use the θ-expansion of the superfields. For our purpose:

λαAα(X , θ) →
{
1

2
em(λγ

mθ)− 1

32
fmn(λγpθ)(θγ

mn�θ)− 1

3
(λγmθ)(θγ

mχi)

}
ek·X

For the 3-gluon component amplitude, only the first two bosonic terms con-
tribute. There are three possibilities: (θ3, θ1, θ1), (θ1, θ3, θ1) and (θ1, θ1, θ3):

A(1b, 2b, 3b) = − 1

128
em
1 f pq

2 en
3 〈(λγmθ)(λγrθ)(λγnθ)(θγpqrθ)〉+ cyc(1, 2, 3)

With some magical γ-matrix identities, one can show:

〈(λγmθ)(λγrθ)(λγnθ)(θγpqrθ)〉 = 24δmrn
pqr

tr δ=10====== −64δmn
pq
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3-pt amplitude III

It has been proved that any (λ3θ5) can be reduced to the standard form (6).
An efficient FORM package is available for this purpose [Maf10].
Thus, the 3-gluon amplitude becomes:

A(1b, 2b, 3b) =
1

2
em
1 f mn

2 en
3 + cyc(1, 2, 3) = (e1 · k2)(e2 · e3) + cyc(1, 2, 3)

That’s what we all learned back in kindergarten. Similarly, one can check
that the amplitude for one gluon and two gluinos is:

A(1b, 2f , 3f ) =
1

18
em
1 〈(λγmθ)(λγnθ)(λγpθ)(θγ

nχ2)(θγ
pχ3)〉 = em

1 (χ2γmχ3)

Here the following Fierz identity is useful:

θαθβ =
1

96
γαβrst (θγ

rstθ)
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trϕ3 theory

trϕ3 theory is described by the Lagrangian:

Lϕ3 =
1

2
∂mΦi |a∂

mΦi |a +
1

3!
fijk f̃abcΦi |aΦj|bΦk|c

The n-point amplitude takes the form [CHY14b]:

Aϕ3

n =
∑
i∈Γn

ci c̃i
Di

=
∑

P,Q∈Sn−2

c1|P|nm(1,P, n|1,Q, n)c̃1|Q|n

The second equality follows purely from Jacobi identities among {ci}. Since
BCJ numerators {Ni} obey the same Jacobi identities as {c̃i}, one expects:

Agauge
n =

∑
P,Q∈Sn−2

c1|P|nm(1,P, n|1,Q, n)N1|Q|n

The partial amplitudes m(P|Q) and their string-theoretic analogues can be
computed via graphical rules [Miz17].
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