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Why amp?
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It's difficult to directly detect strings in the LHC, but ...

® For phenomenology:
That's all we know

Sjrcin(K1 - - s kn)

= Y [ s a0 H/d%—g )2V, (ki )

V.
topology diffx Weyl

string theory only has a perturbative definition.

® For historians:
The first formula in string theory was the Veneziano amplitude, which
describes the scattering of four tachyons.

2]
Sp, (k1 ko ks k) = go 265262k

x [B(—ao(s), —ao(t)) + B(—ao(s), —ao(u)) + B(—ao(t), —ao(u))]
Where, ao(x) :=a'x + 1
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Why amp?
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® For QFT experts:
As o goes to 0, string theory reduces to QFT, making it a powerful tool
for understanding QFT amplitudes. Such as KLT relation [KLT86]:

o ~ o
M, ~ Z A, <l,p, n— 1,n\4> Sor (p|T)An (1,7, n,n— 1|4)

p7T€Sn73

This relation implies a squaring structure, Agray ~ A%M. Furthermore,
the prescription for calculating string amplitudes by integration over
Riemann surfaces inspired the development of the CHY formalism in
QFT [CHY14b; CHY14a|:

dno, Sab
L= dpnTeny,  dpni= —erowr [0
.A Mo,n HnZCHY H VO]SL(27 (C) 1:1 gﬁ:a 7ab

This formulation expresses QFT amplitudes in a universal language,
where the dynamics of different theories are encoded solely in the inte-
rand ICHy.
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Why amp?
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® For mathematician:
Recent research has revealed that string theory amplitudes can be re-
garded as generating functions for number-theoretic functions, such as
Multiple Zeta Values, thereby establishing a connection to number the-
ory [Bro+14].
For example, the tree-level 4-point gauge boson amplitude:

F(l — 20/512)1—‘(1 — 20/523)
F(l — 20/512 — 20/523)

A(1234) = Aym(1234)
o
=exp | 3 eIl oy~ o )
=1 — (20/)*Cos12523 + (20/)* (3512503513

1
— (2&’)4<4512523 <5122 + 1512523 + 5223>

1
— (20/)° 23ty S33513 + 5(2@')5@512523513(5122 + 533+ si3) + O('®)
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Why PS?
0e00

To incorporate SUSY into string theory, it can be introduced either on the
worldsheet or in the target spacetime.
® On the worldsheet: RNS formalism

SrRNS = o= /d2 ( OXFOX,, + 'O, + lf’uai/)u) + Sgh

What is truly desired is target spacetime supersymmetry, which remains hid-
den in the RNS formalism. This can be made manifest through the GSO
projection.

It's easy to construct string spectrum by canonical quantization:

Type lIA Type IIB
la; —)r ® |a; +)r la; +)R ® |o; +)R
2 1/2|O>NS R 1/2l00Ns ¥ 1/2|0>NS ® Y 1/210)Ns
_1/2\0>NS ® |a; +)r _1/2|0>Ns ® |a; +)r
‘0'45_>R®¢’;1 5|0)Ns |Oé;+>R®l/Ji,1 NS
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Why PS?
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It is also straightforward to construct vertex operators via the state operator
correspondence. For example, considering the bosonic part.

" 2\'* 1 ik-X(0,0)
H mysu . IK- )
a_m—H() 7(’”_1)!8 XH(0), [0;k) — e

The vertex operators relevant for tree-level amplitudes are listed below:
UCD(z) = e p(z)e¢@eik X(2), U(’%)(z) — uasa(z)eféqﬁ(Z)eik-X(Z)

Other two vertex operators with different picture number can be constructed
via Picture Changing Operator (PCO). You can find them in the appendix.
Moreover, the relationship between unintegrated and integrated vertex oper-
ators is very simple in the RNS formalism:
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® On the target Spacetime: GS formalism

1 DY [ — 1 me 1= m
Sas = 7T/d z [QH Hm+4Hm(07 00) 4Hm(9’y 00)
Comparing to RNS formalism, we know how to couple GS superstring with
R-R flux. Actually, we can write down more general D brane action in GS

formalism:

So, = — Top / dP“a\/— det(Gap + kFap) + Scs

However, it is very difficult to covariantly quantize the GS superstring, we can
only quantize it in the light-cone gauge. The reasons for this are explained
using a simple toy model in the appendix. Since our spacetime is required
to be SR covariant, it can be anticipated that performing calculations within
the GS formalism is rather challenging.
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PS superstring
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Siegle's idea

To solve the problem related to GS superstring, Siegle introduced a new
independent Grassmann odd variable p, proposed a modified action: [Sie86]

1 1 — _
SSiegel = 7T/d2z [23X'"8Xm + pa 00| + c.c.

However, this formalism is not equivalent to the RNS formalism. The key
point lies in the fact that their OPEs of the SO(9, 1) Noether currents differ:

1
RNS - _77[} Q;Z) ) ErSniggel = _§(p7mn9)

5p[mzn}q(w) _ 5q[m2n]p(w) N smlagpln

RNs (2)25ks(w) ~

z—w (z—w)? )
plmynlq _ salmynlp m[q spln
s (2 )qu (w )Né Yha(w) — 09my (W)+ omag
1e8 lege zZ—w (z—w)?
Moreover, Csiegle = —22 # 0. This is not a consistent string theory!
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PS superstring
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Berkovits' idea |

Referring to equation (2), although they are different, they exhibit very sim-
ilar forms. Suppose we introduce Grassmann even ghost fields {\,, w®}
conjugate to {p,,0“}. The Lorentz current is then corrected to:
14 14 14
MSS = ElStiegIe + Ngh

If NIy satisfy the OPE below, and c\ = 22, the problem is resolved: [Ber00]

§Plu NV]U(W) — gl /\/V]p(w) §smlo solv
~ - 2

N (z) NP
(2)N (w) e )
SHY(z)NP? (w) ~ regular
After tedious calculation, Berkovits proposed pure spinor superstring action:

1 1. _ _
Spg = — / d*z <28X’"8Xm + P00 — waa)\a) +cc, MA=0
v
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PS superstring
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Berkovits' idea Il

With following OPE relations: (because PS constraint, w, A ghost is not a
free CFT.1 ie. Wa(z)/\ﬁ(w)ooi)

zZ—WwW 5g
XMz, Z)X" (W, W) ~ =" In|z — w|?,  du(2)0°(w) ~ P—
kT, (w w))a
cale)ds(w) ~ ) g o)~ OEO)e
(I (W) ~ s @K~ o, (@K~ =2
0 1

1
Do = 5("0)ad, I = 0X™ + - (69706)

890‘
do = P — 5 <8X’" («97”130)) (Ym0)a
'We can use U(5) decomposition of SO(10) to obtain a free CFT, but it's too technical

to include here, even in the appendix ...
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The vertex operators

To obtain the vertex operators, BRST quantization is the best approach:
@3=0
Qp = %dz()\“da) == Ay X = 0 (PS constraint)

The vertex operator for massless (open string) excitations can be straight-
forwardly constructed by computing the BRST cohomology:

1
U(z) = 00“An(X,0) + Am(X, 011" + d, W (X, 0) + §NmnF’"”(X, 0)
V(z) = A*Aa(X,0), {Aq/m, W F™} (aka. K) € 10D SYM

Details on the 10D SYM superfields are provided in the appendix. These
operators can then be used to compute disk amplitudes:

.A(P) = / d2<<V1(21)U2(22) e Un_g(Zn_Q) Vn—l(én—l) Vn(én)>> (3)
D(P)

A simple example can be found in the appendix.
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PS superstring
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Pure spinor formalism vs. RNS formalism (Cons)

® Non-trivial relation between U and V.
PS: 0V(z) = QgU(z), RNS: V(z) = c(z)U(z)

® More complicated vertex operators. Unintegrated vertex operator for
the first massive level «’m? = 1 was found in 2002 [BC02]

V = OXYAu(x, 0)+ : 00°XBog(x,0) : + : dgA*CP(x,0) :
+ "X Hpma(x,0) 1 + : IXYEQ(x,0) 1 4+ : NT"AYFomn(x,0) :

But, it was not until 2018 that the integrated vertex operator was ex-
plicitly constructed[CKV18]:

U=TI"T1"Fpp: + : O"dyF s + : TI700% G+ + = IITNPIF g
+: dadgKY 4 dy 00 F 5 o 4 - dyN™ Gy + : D000 Hyp -
+ 800‘Nm”Hmna S Nmanqunpq :
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PS superstring
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Pure spinor formalism vs. RNS formalism (Cons)

Where,
18 288 432
Fmn —J Gmm Fma = F(Wr)aﬁar‘l'mﬂy Gma = —Y‘I’ma
12 36 1
_ _ 2 B_ __ - .oB
Fmpg = (@2 T 9o Galm: K= (a')2 Vmnp B
4 48 192
F5 = = (Y™ )" 5 OmBapo. O = Qg m ¥l G O O Yol
2
Haﬂ = J'YZSPanpv 576

144 -
Hmpa = 778[ml11n]a - yaq(('Yq[m) @ \I/n]f")’
4 4 12
Grmnpq = Wa[mBn]pq + Wa[PBq]mn - ?a[Pa[m Gn]a]

To handle these complex formulae, several new techniques have been devel-
oped recently [Kas+25][Maf24].
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PS superstring
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Pure spinor formalism vs. RNS formalism (Pros)

® Powerful in amplitude calculations. Compared to the hundred-page com-
putation of the four-point two-loop amplitude in the RNS formalism
[DPO05], the pure spinor formalism requires only a ten-page calculation
[Ber06]. The results were shown to be equivalent [BMO06)].
Note: It's still not clear how to deal with subtleties about multiloop
(¢ > 3) amplitudes.

® The amplitudes are manifestly SUSY and Lorentz invariant. The pure
spinor formalism computes super-amplitudes directly, whereas the RNS
formalism only calculates their components.

e String in R-R backgrounds can be described by PS formalism. Since
the pure spinor formalism manifest spacetime supersymmetry, it can, in
principle, be used to analyze superstrings in AdS backgrounds[BCO1].
For further discussion, see Comments.

Bufan Zheng Department of Physics, University of Tokyo

An Introduction to Pure Spinor Formalism with application to Tree-Level String Amplitudes



Disk amp
00000000

O Tree-Level Scattering Amplitudes

Bufan Zheng Department of Physics, University of

An Intro ion to Pure Spinor Formalism with application to Tree-Level String Ampli



Disk amp
[o] I lelele]ele)

Compute OPEs (n = 2) |

The challenge involves computing OPEs between vertex operators, e.g. for
2 points:

e ke L12(2
Vi(21)Us(22) ~ 215 %2 y: L1z := —AF (MymW1) — Va(ke - A1) + Qa(A2Wh)
12

Ui(z1)Us(z2) ~ zppt k2t (aea [(/q A2)AL — (ka - A1)AZ + Da AR W, — DaAl Wf}

+ 10" {(k1 CA)AL — (ko - A1)AZ + kZ(AsWh) — kL (A1 Wa) — (WiymWa)

1 1
bl (- AW = (o ADWE + O™ WA)® PRy = (07" W) |
1

+ SN (ks - A2)Fhy = (k- A1) Py = 2k3? (WayaWe) + 2F ), F2] )

+ (1 + ki - k)2 2 T2 [(ALWa) + (A2Wh) — (Ar - A2)]
The plane wave factors : X : are dropped. Their contribution is restored
via the Koba-Nielsen factors in the final amplitudes.
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Disk amp
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Compute OPEs (n = 2) Il

Surprisingly, if we define:
AlZ — 1 [A2 (ko - A1) + AP (YmWh)o — (1 4+ 2)]
m=_ [A2 (ko= A1) + ALFE™ + (Wiy™ Wa) — (1 45 2)]
ﬁwmnwz)aa'"" WS (k- A) — (145 2)
FIY = (ks - Ar) + 5 FPRIP 4 A (Way T W) = (165 2)

[
W12_

After dropping some BRST-exact or total derivative terms:

Ui(z1) Ua(z2) ~ U12(22), Vi(z1)Us(z2) ~ Via(22)

212 212

Here U2 and Vio is defined by replacing superfields K, with multi-particle
superfields K12.
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Disk amp
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Compute OPEs (n > 2)

This rule generalizes to higher points using Lie polynomial notation:

Upnag < (Uik)Us), U gy sa < ((U1U2)(UsUy))
The game continues:

Va(za) Ug(zp) ~ M, Ua(za)Ug(zp) ~ M

Zab Zab
In Lorentz gauge 0 - AP = 0: [LMS16]

AP = % :Afj(kQ - Ap) + AQ™(YmWp)a — (P > Q)}

Afp.q = % :Ag(ko - Ap) + ATFGT + (Wpy ™ Wo) — (P ¢+ Q)}

Wip.o = 1 FE (o)™ + 3 (ko - Ap) WG + S WG AL — (P > Q)

Fila = 5 [F8"(ko- Ar) + FE™ A+ FT P — 0 WG W - (P )]
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Disk amp
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Compute OPEs (n > 2)

This rule generalizes to higher points using Lie polynomial notation:

Upzg < ((ULU2)Us),  Upo s <> (U Us)(UsUs))
The game continues:

VA(Za)UB(Zb) ~ M, UA(Za) UB(Zb) ~ M

Zab Zab
These rules allow reducing OPEs to three-point functions like (V?3) e.g.:

1

— —
Vl(Zl)UQ(ZQ) V3(23) \/4(00) =ViUy V3 Vi + ViU V3 Vi+ V1Us V3 V4

Vi > V] z
~ L(l)\/g(zﬁ V4(oo) + VI(ZI)MVMOO)
Z12 223

Via V3 Vy + ViV3aVy

Z12 Z32

I
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Disk amp
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Final result

Using wick contraction to reduce n-pt function:2[MSS13a][MSS13b]

AnlP) = 20 [ S0 (ViaZ1a) (Vi1 Zoms 5)Ve) + perm | (4

AB=23...n—2

-1
1 n 20/
— n,_ —2a’s:
2123”17 = dMP = dzodzz - dz,_o H |Z'J| 4
212223 Zp—1,p D(P)

1<i<

We can use SL(2, C) invariance to fix {z1, zp—1, 25} t0 {0, 1,00} or {0, 00, 1},
depending on the ordering P. Here, (---) denotes integration over the ghost
fields A, 0 with the measure <)\395> = 2880.3 This calculation is feasible,
and further details can be found in [MS23]. The connection with the free
Lie algebra is also discussed.

>We use the Dynkin bracket notation, Vp := Vyp), £(123...n) := [((123...n— 1), n|
3See the appendix regarding the computation of the three-point amplitude.
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Disk amp
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The relation between 10D SYM amplitudes

Open string amplitudes o0, 10D SYM amplitudes:

n—2 k—1

An(P) = (2/)" 3/dup HZ S’"kAY'V' 1,2,...,n) +perm(2,3,...,n—2)
k=2 m= 1
SR ST FRO)AM(L, @, n— 1, n)
QES,—3

Where, s;; := p; - p; and,

FRQ(O/) ::(2al)n3/dﬂrl.z‘>51q2 <51q3 + 5q2¢-‘l3) x (51614 + 59294 + 5q3q4>

Zlg2 \“Zlgs  Zq2q3 Z1qs  Zq2qs  Zq3q4

X <s]-qn—2 + sq2qn—2 + .. + SQn—3Qn—2> a/~>0\ 5RQ
z]-qn—2 quqn—Z ZQn—3CIn—2

Its o/-expansion is related to Drinfield associator, generating series of MZVs,
as mentioned in Sec. 1.
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SYM tree amplitudes from the cohomology of pure spinor superspace |

SYM tree amplitudes can be rewritten in PS language: [Maf+11]

AM(Pn) = " (MxMyM,)
XY=P

Here, Mp is called the Berends-Giele current?, its exact definition can be
found in [MS23]. After integrating out zero modes:

1
(MxMy Mz) = §exf¢”e% + (XxymXy)eZ + cyc(XYZ)

m 1 m m 1 m nm m
F=— > Byp ey =5 [R(ky ex) + exfYT + (Xxy"Xy) — (X & V)]

sp XY P 2
Z xx ,Y] %[x Y] = *(kp + kp) [ex(’Ym%Y)ﬁ - eY(’Ym}:X) ]
P xy=p
= kEep — kpeB — > (eRel —ekel), efi=el, X7:=x]

XY=P

Bufan Zheng Department of Physics, University of Tokyo

An Introduction to Pure Spinor Formalism with application to Tree-Level String Amplitudes



Disk amp
000000 ee

SYM tree amplitudes from the cohomology of pure spinor superspace |l

This gives a new recursive formula for SYM tree amplitudes, fully constructed
via a stringy approach. Moreover, as discussed in [Bad+13] and [GSW11],
Berends-Giele currents lead to fast numerical evaluation of amplitudes.

N gluon amplitudes Numerical precision of N gluon amplitudes

i
mulipiciy N

In this representation
tial amplitudes such

EJ % s 10

I5
multpliy N

of SYM amplitudes, relations among color-ordered par-
as Kleiss - Kuijf and BCJ relations can also be easily

derived using Ree’s theorem from free Lie algebra.[FMM?23]

*The original concept of the BG current comes from off-shell recursion relations of YM

amplitudes.[BG88]
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@ Construct BCJ Numerator of 10d SYM Theory*
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BCJ numerator
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Color-Kinematic duality: trivalent encoding

The full color-dressed n-point tree amplitude of Yang-Mills theory can be
conveniently organized in terms of diagrams with only cubic vertices:

h= 3G

Tips: Why cubic vertices only?

1 4
k1+k‘2) 9
~ ki + Fk
k1+k2) ( ! 2)
2 3

The propagators {D;} and color factors {¢;} are straightforward to obtain
from the diagrams. However, constructing the kinematic numerators {N;} is
non-trivial.
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BCJ numerator
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Color-Kinematics duality: BCJ numerators

[BCJO8] showed that there exists a representation in which the kinematic
numerators {N;} obey the same algebraic relations as the color factors {¢;}:

C; .. Cj . Ck B
[ A
i.e., both satisfy the Jacobi identity, as well as anti-symmetry. These special
(but not unique) kinematic numerators are known as BCJ numerators.

At tree level, BCJ numerators can be constructed through various meth-
ods, you will encounter a stringy approach later. While this duality is conjec-

tured to hold at loop level based on substantial evidence, a complete proof
remains an open problem.

color citci+ce =0

kinematics Ni+ N+ N, =0

Bufan Zheng Department of Physics, University of Tokyo
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Double copy relations

More exciting, once this is imposed, gravity amplitudes are obtained using
two copies of gauge theory BCJ numerators: [BCJ10]

CilN; Tree 3{N;}B v
Di  Loop 3{N;}BC ?

. N;N; N;N;
Mgrawty — Y — 1Y
’ 2 bi o D

A%auge —
icl, i€ly
Here, N; # N; indicates that the BCJ numerators for the "left-moving"
and "right-moving" gauge theories need not be identical. In fact, the KLT
relations serve as a specific realization of the double copy progaram, enabling
the construction of BCJ numerators for tree-level YM theory.[Car15]
However, this remains a conjecture at the loop level and has not been
proven untile now. By the way, this property is not an accident of few
very special theories, but extends to large classes of gravitational and non-
gravitational theories. More details can be fund in [Ber+24].
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Web of double copy constructible theories

Open Bosonic ‘
String

Closed
Superstring

Closed Bosonic
String

N=2 Maxwell-Einstein
SGs (generic family)

N=2 SGs with
Hypermultiplets

Volkov-Akulov
Theories

Special Galileon
Theories

DBI Theories

'Yang-Mills Einstein
Theories

Bufan Zheng
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Del-Dixon-Maltoni basis |

Using Jacobi identity, AYM can be expanded in "half-ladder" basis: [DDMOO0]
Ciloy - op_z|n

A%auge = E falaglbl fbla°'2 ba .. fb"_sa””*Qa" An(]-, 01,02,...,0n-2, n)
oES,_2

tr()\% Aoz ... )\a%_1)\an)

Color Decomposition

U I > < % \U] flhazzlleaslz L qu 3Qn-1an
=(-

fdnr‘frbe o fdbrfrae fabrfdrp i)t QA A%, [, A )
o1 09 On—2

‘ o ..
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Del-Dixon-Maltoni basis |l

As discussed in appendix, A58 can be rewritten by using partial amplitudes
of tr ¢ theory, m(P|Q), in DDM basis.

A = N ogpm(1, P, nl1,Q,m)Nyjq
P,QESn—z
=SALUE(P) = Y Nigp-1m(PIL,Q,n—1)
Q65n72

(5)

Since in the DDM basis, Ny q|, are independently of each other, they cannot
be related through Jacobi identities. If A58 can be organized in the form
above, then the BCJ numerators are naturally constructed. We will see that
this is straightforward in the pure spinor formalism.
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Construct BCJ numerators |

To factor out all the o’ dependence, the n-point open string amplitude (4)
can be reorganized in terms of Z-integral:

AP)y=" > (ViaV, Ve (=) Z(P|1, A n, B,n — 1) + perm
AB=23---n—2
_ dzydzy - - - dz, 9
Z(P ::2'"3/ 22 T |z 2 PT
(PIQ):= 2" | S IeL® ,H| il (Q)
1 1
P(1,2, tee ,n) = = 2123...,,

212223 - - - Zn—1,nZn,1 Zn,1

Only one final step remains: taking the o/ — 0 limit, one can show that,

lim Z(P|Q) = m(P|Q), A,(P)*""& — A, (P)sauee

a’—0

Bufan Zheng Department of Physics, University of Tokyo
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Construct BCJ numerators Il

Thus, the open string amplitude reduces to:

Ap(Pyrine 220, (ViaV,

(nfl)évn>(71)|3|71m(P|17A7 n, 87 n_1)+perm
AB=23---n—2

Recalling the expression in the DDM basis (5):

A%auge(P) — Z NllQ‘nilm(Pll,Q,n—l), Z <~ Z-I—perm

QRES,—2 Q AnB

we finally obtain:

Nijangin-1 = (=1) 71 (ViaV, 15 Va)

More details can be found in [MSS11].
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Conclusion

® The PS superstring allows covariant quantization with manifest target-
space SUSY

1 1., _ -
Spg = — / d*z (QBX’"C?Xm + pa00% — waaAf"> + c.c.
T

® Tree-level amplitudes admit a compact representation in PS superspace

An(P) = (20/)"73/du7> > {(Miazia)(V,_1)8Z,1.8) Va) + perm

AB=23...n—2
AP ) =Y (MxMy M)
XY=P

® BCJ numerators can be constructed straightforwardly in the PS formal-
ism*
N1|AnB|nfl = (_1)|B|71<V1A V(nfl)évn>
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Some elementary comments on non-trivial target spacetime

PS Supertstring in AdSs x S® background can be described by:

Sps :/dzz

1 a7b 1 a B _ a By, _
2J J T]£+2(J J7 = 3J°J%)nap

— - = 1 — oyl —
+ wWa VAY + @g VY — E(Nab/\/ab — NP N,p)
Covariant vertex operators can also be constructed: [CV17]
V =2*2%A.alg)
U =205 J° TP Wo — 20,0 J° TP W 5+ J° TP A + I % Ana — J2 1% Asa
+ %J"‘ NEF, ., — %N@j@ Faba + J7 V05 + J20° Vi + STV + J21V,
+ i/\/ﬂ/i/ﬂvi,,g + %Nﬂjavﬂm + %J‘S‘ N2V 45 + %Jé/v@vﬂ + %N"—Cﬁfxﬁg

These superfields are constrained by very complicated equations, and further

calculation is needed to determine the exact form of U and V.
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The best of three worlds: B-RNS-GSS formalism

PS superstring does not possess world-sheet supersymmetry. Recently the
B-RNS-GSS formalism, which combines the desirable features of three for-
malisms, has attracted considerable attention [Ber21].

SB.RNS-GSS = /dQZ <%8Xm5X"' + %’l[)mgiﬁm —+ bgc -+ ,85’}/ + Pagea + WQEAQ)
With the following action in AdS5 x S spacetime: [CG24]

N dada + Wa VA*

N =

S= /dQZ <;J3Ja + %naa(ﬂja + ST+ dod” 4 dad™ —

— e 1 =5 1— _—a 1 ., —a o -2 o a
P VAT LT+ L0,V Lutwl T ) 4 S8 S ()

; P (wrw’

| =

1 a/—  — 1 Ellryi 1 a7hb — [e%ey 1 — a—
= gL @aw) + SNIN Gy — g wa W (am) ™ 64(W’YaW)(W’YW)> + Sen
Unintegrated and integrated vertex operators for massless states were con-
structed in [Cha25], but they are too complicated to include here.
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Vertext operators in RNS formalism |

The missing two vertex operators are:

2 . Oé/ ik-
u© :\/Eeu (@X“ + (k- ¢)¢“) ek X

By the way, S® is called spin operator, which represents one of the most
challenging aspects to handle in the RNS formalism.

Indeed, vertex operators connected by a Picture-Changing Operator (PCO)
are physically equivalent, as shown here U= = (9 and U2 = ytta),
However, when computing tree-level correlation functions of vertex operators,
the total picture number must sum to —2 in order to cancel the contribution
from the background superghost number [BLT13].
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Vertext operators in RNS formalism [l

By the way, you may not be fully familiar with unintegrated and integrated
vertex operators. Let me briefly review them. To calculate the string S-
matrix, we need to compute correlation functions of the following form:

S ~

/d21 < dzy (Ur(21) -+ Un(zn))

Veke

We call U;(z;) the integrated vertex operator, since we must integrate over z;.
However, to gauge-fix the conformal Killing group (Vckg) in tree-level, we
must also fix three points on the sphere. In this case, [ dzU(z) at marked
points should be replaced by V/(z), the unintegrated vertex operator. In
the RNS formalism, there is a simple relation between U and V/, as seen in
equation (1).
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Why can we not quantize GS superstring covariantly? |

To make life easier, let’s consider the massless particle limitation of GS su-
perparicle, known as Brink-Schwarz superparticle:

. 1.
Sps = /dT (P, +ePHPy), TIIM = Xt — §0a75505
This theory has N = 1 supersymmetry:

5% =€, XM = ea 5, SPF =6e=0
1 oL 1
= —fﬂeﬁp o = —— = — =" .0°P
Qu Pa 2’Yag w P Py Q’Yag u

String theory is a constrained system, much like gauge theory, the worldsheet
energy-momentum tensor must vanish. Similarly, in particle theory, we need
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Why can we not quantize GS superstring covariantly? Il

on-shell condition, P? = 0. Moreover, we introduce two pairs of conjugate
variables: X, P and p,f0. The latter are not independent. The constraint
between p and 6 is:

1
It is straightforward to compute their Poisson brackets:

{da, dstre = _”Ysgpu

A more careful analysis shows that these constraints consist of 8 first-class
and 8 second-class constraints. Only in light-cone coordinates do these two
classes decouple:

Igxs Osxs
{da7 d,B}PB = _’7;/3P+ X
Ogxs Ogxs

Bufan Zheng Department of Physics, University of Tokyo

An Introduction to Pure Spinor Formalism with application to Tree-Level String Amplitudes



Appendix
0000080000000

Why can we not quantize GS superstring covariantly? Il

Dirac’ s classification of constraints is a very old concept [Dirl3]:
® First class: {di,d2} =0
Corresponds to gauge symmetries. Can be eliminated by gauge fixing or
via Gupta-Bleuler quantization: d|phys) = 0.
® Seconed class: {di,d2} # 0
Corresponds to redundant degrees of freedom®. Before canonical quan-
tization, Poisson brackets must be replaced by Dirac brackets. The
constraint d = 0 is then treated as a strong operator equation: d=05
Furthermore, GS formalism has an additional gauge symmetry, x-symmetry:

1. -
0% = PryPrg, XM = —59 75559/3, SPH =0, de=0%%,

This symmetry can be fixed in light-cone coordinates, after which the full
theory can be quantized. For further details, see [BG17].
®Such as using (x, y, z) to describe a planar motion.

®Don’t need to act on |phy)
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Linearized 10D SYM superfields: equation of motion

In 10D SYM, the physical spectrum contains only gluons A, = A, (X, 6) and
gluinos A, = A, (X, ), satisfying the following e.o.m:

{vou vﬂ} = fy(l;/@v/h {vou vu} = _(’VHW)Q)
1 17 v v
{vaawﬁ} = Z(’Y“ )a'BFum [VOH]Fu ] = (W[ﬂ7 })oz
Fu =—[Vu, V], Wi, = [V, W
0 1
T
890‘ + 2(7 Q)CYa;u'
In the linearized approximation, superfields K +— K describe asymptotic

states and satisfy:
Do A + DAl = ygﬁAL, Do AL = (7 Wi)a + 8, AL,
1

Do VVIﬁ = Z(’ywj)aﬁF;’;w DO&F;iy = a[p,(’yu] VVi)a
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Linearized 10D SYM superfields: #-expansion |

In the Harnad - Shnider gauge, 0“A, = 0, these equations can be solved
explicitly. The resulting superfields admit a #-expansion. For pure spinor
computations it suffices to keep terms up to O(6*):

i ]_ m 1 m ]- mya n,
AL(X,0) = {2(97m)aei =+ 5(9%1)«1(97 Xi) — 33(97 ) (0Ymnp0) £

1 m n 1 m nrqr .
+ @(9’7 )a (0vmnp0) k' (xi7"0) + m(% )a (0Ymnp0) (07 o, ) K £ + - - - }ek' X

m m m 1 m 1 m n
AT(X,0) = {e, +(0v"xi) — §(9’Y pa) P+ 5(97 wp0) ki (Xi7"0)

1 m r nepq 1

192 (07", 0)(07 pgO) ki kF (xiv0) + - - - }e ",
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Linearized 10D SYM superfields: #-expansion Il

« « l @ ~mn 1 @y m n 1 « m gn,
Wi (X, 0) —{x,- 4 B £ = L O%mn) K (") = 35 07 Orana KT

(O’Ym ) (O’anse) (H’Yque)kimkffipq T }ek%x,

1
m n, kl,nkln i P
6(07 )% (0vgnp0) (xi"0) — 1920

9
mn mn m n 1 m n 1 m n
Fi <x,e>—{f,- = K" (0"0) + 5 O MO P — 1 (Ona O KT KE (xi7%0)

1

192 (0713'5 me) f'qr(e’ysqre)

480 — (O Ok KP KT (X 0)(07° 1, 0) + - - }ek"'x-

Here we use the convention ik — k to get rid of i = +/—1. Moreover,
By R I3
17 = kl'e] — ki el

M is the polarization vector for boson and x“ is the wavefunction of fermion.
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3-pt amplitude |

To compute the disk amplitudes (3), we encounter nested correlators. The
inner correlator is handled by OPEs, which reduce the double bracket to (V/3).
The remaining step is to integrate over zero modes. The 3-point amplitude
is chosen here because it receives no OPE contributions and is determined
entirely by the zero modes of A\, and <.

A(1,2,3) = (Vi VaVs) = (A1) (AM2) (MA3))
= A(1b7 2b7 3b) + "4(1[)7 2f7 Sf) + A(1f7 2b7 3f) + A(lf') 2f7 3b>

The second equality shows that in the PS formalism we compute superam-
plitudes directly, and the components must then be extracted by hand.
To evaluate the outer bracket, we use the following PS superspace measure:

(A30°) := (Ay0) (Ay"0)(MyP0) (0ymn 0),  ((A?0°)) = 2880  (6)
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3-pt amplitude Il

Note: The value 2880 is conventional, it can be absorbed into the definition

of the string coupling, so any choice is acceptable.
Next, we use the #-expansion of the superfields. For our purpose:

o 1 m 1 mn 1
A% Aa(X,0) —>{ em(A\170) = =5 Fn(A0) (07" 0) = 5 (Aym) (67 X)} fox
For the 3-gluon component amplitude, only the first two bosonic terms con-

tribute. There are three possibilities: (6,6%,6%), (6%,6,6') and (6%, 6%,63):

1
A(15,26,38) = = 1o el 75 (00N (N1 8) (\1"6) (B3par)) + cye(1,2,3)

With some magical y-matrix identities, one can show:

tr0=10

(MY™0) (XY 0) (\"0) (07pgr)) = 246 =10

par

640 5"
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3-pt amplitude Il

It has been proved that any (A30°) can be reduced to the standard form (6).
An efficient FORM package is available for this purpose [Maf10].
Thus, the 3-gluon amplitude becomes:

1
A(1p,2p,3p) = fel 'fy"es +cye(1,2,3) = (e1 - ka)(e2 - e3) + cye(1,2,3)

That's what we all learned back in kindergarten. Similarly, one can check
that the amplitude for one gluon and two gluinos is:

A(1p,2£,3f) = — e {(AMm) (A7n0) (Myp0) (07" x2) (07Px3)) = €]" (X27mX3)

18

Here the following Fierz identity is useful:

1 r
0°6° = %Vrst (67 Ste)
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tr ¢ theory

tr ¢3 theory is described by the Lagrangian:
1 1, -
£¢3 = §amq)i\aamq)i\a + gfijkfabcq)ﬂaq)j\b(bkk
The n-point amplitude takes the form [CHY14b]:
3 C;E; ~
AT =) D > cpam(l,P,nll, Q, ) gl
ieb, ! P,QES,—2

The second equality follows purely from Jacobi identities among {¢;}. Since
BCJ numerators {N;} obey the same Jacobi identities as {¢;}, one expects:

Aguge Z c1|p|nm(1,P,n|1,Q, n)N1|Q|,,
onesn—Q

The partial amplitudes m(P|Q) and their string-theoretic analogues can be
computed via graphical rules [Miz17].
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