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Feynman Diagrams

For QED process, Feynman diagram is a efficient tool
to calculate scattering amplitudes.

Feynman’s rule is derived from the Lagrangian, there
are many terms in the Lagrangian that are blame to
gauge redundancy, which inevitably leads to very
complex expressions for individual Feynman diagrams,
but the superposition of all Feynman diagrams is simple.

SEH =

∫
dDx

[
h∂2h + κh2∂2h + κ2h3∂2h + κ3h4∂2h + · · ·

]
We have too many Feynman diagrams to sum. The
number of diagrams is growing much faster than n!.

s

t
b

t

Figure: Kawaii feynman
diagram
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Chinese Magic
Spinor-Helicity Formalism

Using On-shell condition p2 = 0:

paȧ = σµ
aȧpµ = λaλ̃ȧ ≡ |p] 〈p|

we can do the same thing for σ̄µ
ȧapµ to define |p〉 and [p|.

It is easy to see that |·〉 and |·] automatically satisfy the gauge invariant condition:

p ȧb |p]b = 0, paḃ |p〉
ḃ = 0, [p|bpbȧ = 0, 〈p|ḃpḃa = 0.

In fact we can use gauge degree of freedom to simplify our expressions:

ε+µ (k; q) =
〈q−|γµ|k−]√

2〈qk〉

The reference momenta q can be chosen freely.
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Tree Amplitudes of YM

MHV Amplitudes (Park-Taylor):

An
[
1+ . . . i− . . . j− . . . n+

]
=

〈ij〉4

〈12〉〈23〉 · · · 〈n1〉

NkMHV Amplitudes:

ANPMHV
n (c0, c1, . . . , cp , n) =

δ(4)(p)
〈12〉〈23〉 . . . 〈n1〉×

×
∑

all paths of length p
1 · R̃n;a1b1 · R̃{L2};{U2}

n;{I2};a2b2
· . . . · R̃{Lp};{Up}

n;{Ip};apbp

×
(
det Ξpath

n (c0, . . . , cp)
)4

Complex, but fully solvable by computers
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Rimann Sphere
Momentum Space

KD,n := {(kµ
1 , k

µ
2 , . . . , k

µ
n )|

n∑
a=1

kµ
a = 0, k2

1 = k2
2 = · · · = k2

n = 0}/SO(1,D − 1) (1)

If there is no codimensional singularity

sa1,a2,...,ar := (ka1 + ka2 + · · ·+ kar )
2 6= 0, ∀r = 1, . . . , n (2)

We can consider the moduli space of Riemann spheres CP1 with n distinct punctures
on it to carve KD,n equivalently.

M0,n ≡ {σ1, σ2, . . . , σn}/SL(2,C)

KD,n ⇐⇒ KD,n by kµ
a =

1
2πi

∮
|z−σa|=ε

dz pµ(z)∏n
b=1(z − σb)

(3)
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Scattering Equations

Using eq.3, we can derive the scattering equation:∑
b 6=a

sab
σa − σb

, a = 1, 2, . . . , n, sab = 2ka · kb (4)

n equations but only n − 3 of them are independent.

(n − 3)! solutions (codimensional singularity will bring degeneration).
KLT orthogonality of solutions to scattering equations.
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(i , j)
(i , i) 1

2 (j, j) 1
2
= δij (5)

Where,
(i , j) :=

∑
α,β∈Sn−3

V (i)(α)S[α|β]U(j)(β)
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Scattering Equations
Using eq.3, we can derive the scattering equation:∑

b 6=a

sab
σa − σb

, a = 1, 2, . . . , n, sab = 2ka · kb (4)

n equations but only n − 3 of them are independent.
(n − 3)! solutions (codimensional singularity will bring degeneration).
KLT orthogonality of solutions to scattering equations.
Where,

V (ω) =
1

(σ1 − σω(2))(σω(2) − σω(3)) · · · (σω(n−2) − σn−1)(σn−1 − σn)(σn − σ1)
,

U(ω) =
1

(σ1 − σω(2))(σω(2) − σω(3)) · · · (σω(n−2) − σn)(σn − σn−1)(σn−1 − σ1)
.
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Bi-adjoint Scalar, YM and Einstein Gravity
The amplitudes of many QFTs (at the tree level) can be expressed by a unified formula
(Cachazo, He, Yuan, 2013).

An =

∫
dµnIn, dµn =

dnσ

volSL(2,C)
∏

a

′δ

(∑
b 6=a

sab
σab

)
(6)

For different theories, the integral measure is the same, differing only in the CHY
integrands In

M(s)
n =

∫ dnσ

volSL(2,C)

′∏
a

δ(
∑
b 6=a

sab
σa − σb

)

(
Tr(T a1T a2 · · ·T an)

(σ1 − σ2) · · · (σn − σ1)
+ . . .

)2−s (
Pf ′Ψ

)s

(7)
For Scalar, s = 0,

LΦ3
:= −1

2∂µΦI ,̃I∂
µΦI ,̃I − λ

3! fI,J,K f̃̃I,J̃,K̃Φ
I ,̃IΦJ,J̃ΦK ,K̃ (8)
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IΦ3

U(N)×U(Ñ)
:= CU(N)CU(Ñ) (8)
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σα(1)α(2)σα(2),α(3) · · ·σα(n),α(1)
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(Cachazo, He, Yuan, 2013).
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(∑
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)
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)
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+ . . .
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Pf ′Ψ

)s

(7)
Delta functions in eq.6 totally local the integral, so we don’t need to calculate

annoying integral, we just need to solve the scattering equations.
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Bi-adjoint Scalar, YM and Einstein Gravity
The amplitudes of many QFTs (at the tree level) can be expressed by a unified formula
(Cachazo, He, Yuan, 2013).

An =

∫
dµnIn, dµn =

dnσ

volSL(2,C)
∏

a

′δ

(∑
b 6=a

sab
σab

)
(6)

For different theories, the integral measure is the same, differing only in the CHY
integrands In

M(s)
n =

∫ dnσ

volSL(2,C)

′∏
a

δ(
∑
b 6=a

sab
σa − σb

)

(
Tr(T a1T a2 · · ·T an)

(σ1 − σ2) · · · (σn − σ1)
+ . . .

)2−s (
Pf ′Ψ

)s

(7)
i.e. ∑

{σ}∈solutions

(σpqσqrσrp)(σijσjkσki)

|Φ|ijkpqr
I (8)
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Bi-adjoint Scalar, YM and Einstein Gravity
For YM, s = 1, (Gervais–Neveu gauge, ghost free)

L = Tr
(
−1

2∂µAν∂
µAν − i

√
2g∂µAνAνAµ +

g2

4 AµAνAνAµ

)
IYM

n = CnPf′Ψ({k, ε, σ}) (9)
For Gravitons, s = 2, (de-Donder gauge, ghost free)

LEH =∂αh∂βhαβ − ∂αhβγ∂βhαγ − 1
2(∂αh)2 +

1
2(∂γhαβ)2 +O

(
κ, h3)

+ ∂νhµν∂ρhµ
ρ +

1
4(∂µh)2 − ∂νhµν∂µh

IGR
n = Pf′ΨnPf′Ψ̃n (10)

We introduce Ψ̃, because generally, we can contain dilatons and B-fields in GR. For
pure graviton scattering, Ψ = Ψ̃.
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Bi-adjoint Scalar, YM and Einstein Gravity

For YM, s = 1,
IYM

n = CnPf′Ψ({k, ε, σ}) (9)

For Gravitons, s = 2,
IGR

n = Pf′ΨnPf′Ψ̃n (10)

Where,

Ψ =

(
A −CT

C B

)
, Pf′Ψ :=

(−1)i+j

(σi − σj)
Pf(Ψij

ij) (11)

and,

Aab =

{
sab

σa−σb
, a 6= b

0, a = b,
Bab =

{
2εa·εb
σa−σb

, a 6= b
0, a = b,

Cab =

{
2εa·kb
σa−σb

, a 6= b
−
∑

c 6=a
2εa·kc
σa−σc

, a = b
(12)
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More theories and their connections

The greatest advance in
scattering amplitudes in the
last two decades has been the
formulation of the BCFW
recursion relations, which has
greatly simplified the
calculations.

3.2 BCFW recursion relations 53

The recursive formula (3.8) gives a manifestly gauge-invariant construction of scatter-
ing amplitudes. Thus (3.8) is the general “prototype” of the on-shell recursion relations
for tree-level amplitudes under a valid shift of the external momenta. We did not use
any special properties of 4d spacetime, so the general derivation of the recursion re-
lations is valid in D spacetime dimensions. In the following, we specialize to D = 4
again.

3.2 BCFW recursion relations

We shifted all external momenta democratically in (3.1), but with a parenthetical remark
that some of the light-like shift-vectors rμ

i might be trivial, rμ

i = 0. The BCFW shift is one
in which exactly two lines, say i and j , are selected as the only ones with non-vanishing
shift-vectors. In D = 4 spacetime dimension, the shift is implemented on angle and square
spinors of the two chosen momenta:

|î] = |i] + z | j] , | ĵ] = | j] , |î〉 = |i〉 , | ĵ〉 = | j〉 − z|i〉 . (3.9)

No other spinors are shifted. We call this a [i, j〉-shift. Note that [î k] and 〈 ĵ k〉 are lin-
ear in z for k �= i, j while 〈î ĵ〉 = 〈i j〉, [î ĵ] = [i j], 〈î k〉 = 〈ik〉, and [ ĵ k] = [ jk] remain
unshifted.

� Exercise 3.1
Use (2.15) to calculate the shift vectors rμ

i and rμ

j corresponding to the shift (3.9).
Then show that your shift vectors satisfy properties (i)–(iii) of Section 3.1.

With the two momenta i and j shifted according to (3.9), the BCFW recursion relation for
tree amplitudes takes the form

An =
∑

diagrams I

ÂL(zI )
1

P2
I

ÂR(z I ) 

∑
diagrams I

PI
^^ ^i jL R

.

(3.10)

The sum is over all channels I such that the shifted lines i and j are on opposite sides of the
factorization diagram in (3.10). As in the general recursion relations (3.8), there is also an
implicit sum over all possible on-shell particle states that can be exchanged on the internal
line.

Before diving into applications of the BCFW recursion relations (such as proving the
Parke–Taylor formula), let us study the shifts a little further. As an example, consider the
Parke–Taylor amplitude

An

[
1−2−3+ . . . n+] = 〈12〉4

〈12〉〈23〉 · · · 〈n1〉 .

(3.11)

=

Figure: BCFW Recursion Relations.
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More theories and their connections

Scattering equations are very
difficult to find all (n-3)!
solutions. In this sense, the
CHY formula doesn’t bring us
a new efficient tool for
calculating amplitudes. But it
gives us a unified framework
to consider connections
between different theories.

Here both Xn and An have size n× n, defined as

(Xn)a,b :=

 δIa ,Ib
σa−σb

, a 6= b

0 , a = b ,
(An)a,b :=


ka·kb

σa−σb
, a 6= b

0 , a = b ,
(1.46)

where Ia, Ib are the flavor/color indices. The matrix Xn is obtained from Xn just by
identifying all the flavor/color indices δI,J ≡ 1. The matrix Ψn is of size 2n× 2n with
the block structure

Ψn :=

(
An −CT

n

Cn Bn

)
, (1.47)

where the block An is the same as that in (1.46), while Bn and Cn depend on the
polarization vectors εµ, defined by

(Bn)a,b :=


εb·εb

σa−σb
, a 6= b

0 , a = b ,
(Cn)a,b :=


εa·kb

σa−σb
, a 6= b

−∑c 6=a(Cn)a,c , a = b .
(1.48)

And finally the matrix Π is obtained by applying a “squeezing” operation on the
matrix Ψn. Since a generic Π matrix has a more complicated structure, we leave its
definition to the detailed discussion in Chapter 5. Note that the matrices An, Ψn and
Π all have corank two on the support of the scattering equations, their Pfaffian vanish,
and so the appropriate quantity associated with them is a reduced Pfaffian (denoted
by a prime), which is to be defined in Chapter 4.

With these building blocks, the theories for which we have discovered closed formulas
together with the corresponding integrands are listed in Table 1. In this table, we use

Table 1: List of Theories with Their Corresponding Integrands

Theory Integrand Section

Einstein gravity Pf′Ψn Pf′Ψn 4.5
Yang–Mills Cn Pf′Ψn 4.4.1

Φ3 flavored in U(N)×U(Ñ) Cn Cn 4.2.1
Einstein–Maxwell Pf[Xn]γ Pf′[Ψn]:γ̂ Pf′Ψn 5.1.3

Einstein–Yang–Mills Ctr1 · · · Ctrt Pf′Π(h; tr1 . . . , trt)Pf′Ψn 5.2
Yang–Mills–Scalar Cn Pf[Xn]s Pf′[Ψn]:ŝ 5.1.1

generalized Yang–Mills–Scalar Cn Ctr1 · · · Ctrt Pf′Π(g; tr1 . . . , trt) 5.2.4
Born–Infeld Pf′Ψn (Pf′An)2

4.4.3
Dirac–Born–Infeld Pf[Xn]s Pf′[Ψn]:ŝ (Pf′An)2

5.1.2
extended Dirac–Born–Infeld Ctr1 · · · Ctrt Pf′Π(γ; tr1 . . . , trt) (Pf′An)2

5.2.5
U(N) non-linear sigma model Cn (Pf′An)2

4.2.3
special Galileon (Pf′An)4

4.2.6

14

Figure: CHY integrands of different QFTs
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More theories and their connections

Scattering equations are very
difficult to find all (n-3)!
solutions. In this sense, the
CHY formula doesn’t bring us
a new efficient tool for
calculating amplitudes. But it
gives us a unified framework
to consider connections
between different theories.

GR

EMEYM

YM

YMS
gen.
YMS

Φ3

BI

DBI
ext.
DBI

NLSM

sGal

com
pactify

“squeeze”
“compactify”

            Connections among integrands. Compactify: . Squeeze: . “Compact-
ify”: . Non-Abelian: . Restrict to single trace: .

way is to compactify or squeeze in the second step those particles which are already
photons/gluons from the first step. Due to this restriction, we did not list out EMS in
Table 3.

As mentioned at the beginning of Chapter 4, most of the formulas that we identify with
amplitudes in certain theories are conjectured. The ones that have been completely
proven are the integrand for gravity, Yang–Mills, and Φ3. Given these, we do not have
worry about the formulas for EM(S) and YMS, since they are obtained just by the
standard compactifications of amplitudes in gravity and YM. As will be discussed in
detail in Chapter 6, we are able to study a generic soft limit or a generic factorization
limit to confirm the consistency regarding locality and unitarity. However, in the
absence of a complete proof explicit checks up to a sufficiently high order in the
multiplicity n and to a sufficiently generic situation (spacetime dimensions, and
specific configuration of external states when several types of particles are involved)
are still necessary for the remaining formulas. We summarize the explicit checks that
have been performed for each of them in Table 4.

67

Figure: Theory Web.
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KLT double copy

Gravity = YM2/φ3,

Mn = (−1)n
∑
β,γ

An(1, β2,n−1, n)S̃[β2,n−1|γ2,n−1]pnÃn(n, γ2,n−1, 1)
s23...n

(13)

Where, KLT kernel S[α|β] can be constructed by double partial amplitudes of φ3

theory:

S[α|β] =
n−2∏
i=2

s1,α(i) +
i−1∑
j=2

θ(α(j), α(i))βsα(j),α(i)

 = m(α|β)−1 (14)

So, we divide YM2 by φ3.



Scattering Amplitudes scattering Equations CHY formalism Thanks

KLT relations

KLT othogonality eq.5 can be rewrited as,

δα,γ =
∑

β∈Sn−3

∫
dµnPT(α)PT(β)S[β|γ] (15)

So if we have a theory Mn whose CHY integrand is I = ILIR . Then we can define
two partial amplitudes ML

n and MR
n , whose CHY integrands are IL · PT and IR · PT,

respectively.
Which gives a general KLT relation,1

Mn = ML
n ⊗KLT MR

n (16)

The CHY formalism enables us to gain insights that would otherwise be difficult to
discern from the Lagrangian.

1”KLT” suffix means we need a KLT kernel.
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100
Thank you!
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