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Feynman Diagrams

@ For QED process, Feynman diagram is a efficient tool
to calculate scattering amplitudes.

Figure: Kawaii feynman
diagram
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Feynman Diagrams

@ For QED process, Feynman diagram is a efficient tool
to calculate scattering amplitudes.

@ Feynman's rule is derived from the Lagrangian, there
are many terms in the Lagrangian that are blame to
gauge redundancy, which inevitably leads to very
complex expressions for individual Feynman diagrams,
but the superposition of all Feynman diagrams is simple.

Sen = /de [0 h + kW20 h + K2h302h + K3H*O?h + -

]

Figure: Kawaii feynman
diagram
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Feynman Diagrams

@ For QED process, Feynman diagram is a efficient tool
to calculate scattering amplitudes.

@ Feynman's rule is derived from the Lagrangian, there
are many terms in the Lagrangian that are blame to
gauge redundancy, which inevitably leads to very
complex expressions for individual Feynman diagrams,
but the superposition of all Feynman diagrams is simple.

Sen = /de [h0?h + kh?0h + K2 h3?h + K3 O%h +

@ We have too many Feynman diagrams to sum. The
number of diagrams is growing much faster than n!.
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Figure: Too many diagrams
. ]to sum
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Spinor-Helicity Formalism
@ Using On-shell condition p? = 0:
Pas = 0hapu = Aaks = |p] (pl
we can do the same thing for G%_p, to define [p) and [p|.
@ It is easy to see that |-) and |-] automatically satisfy the gauge invariant condition:
pP*pls =0, pulp)® =0, [p°pra=0, (p|p>* =0.
@ In fact we can use gauge degree of freedom to simplify our expressions:

k- :<q_|'7u‘k_]
ki) V2(qk)

The reference momenta g can be chosen freely.
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Tree Amplitudes of YM

e MHV Amplitudes (Park-Taylor):

o N*MHV Amplitudes:

5¥(p)
NPMHV =
A (co,c1,.-.5Cpy 1) = (12)(23) ... (n1) .
. B{La}i(Us) RiLo}i{Up}
X E 1. Rn;a1b1 ’ Rn;{2l2};322b2 T R”${p/p};appbp

all paths of length p

4
X <det =path(ey ., c,,))

Complex, but fully solvable by computers
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Rimann Sphere

Momentum Space

R = {(K K KD K =0,k =k3 == ki =0}/SO(1,D—1) (1)
a=1

If there is no codimensional singularity
Say.amar = (Kay + kay + -+ k)2 #0, Vr=1,....n (2)

We can consider the moduli space of Riemann spheres CP* with n distinct punctures
on it to carve Rp , equivalently.

Mo,n = {01,02,...,0,}/SL(2,C)
1 L P @

Rpn < Rpnby kil =—
D,n D,n DY Kj i 20| ngl(Z—Ub)
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Using eq.3, we can derive the scattering equation:

D

b#a

Sab

b
Oa — 0p

a=12...

@ n equations but only n — 3 of them are independent.
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Scattering Equations

Using eq.3, we can derive the scattering equation:

Yo a=12n, s =2k ko (4)
03— Op
b#a

@ n equations but only n — 3 of them are independent.

@ (n— 3)! solutions (codimensional singularity will bring degeneration).
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Scattering Equations

Using eq.3, we can derive the scattering equation:

E Sab , a=12,....n, sy =2k, kp (4)
Oa— Op
b#a

@ n equations but only n — 3 of them are independent.
@ (n— 3)! solutions (codimensional singularity will bring degeneration).
@ KLT orthogonality of solutions to scattering equations.

() -
()26
Where, _ _
()= > VO@)slalsuie)

a,ﬂ65n73
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Scattering Equations

Using eq.3, we can derive the scattering equation:

E Sab , a=12,...,n, s =2k, kp (4)
0a— Op
b#a

@ n equations but only n — 3 of them are independent.
@ (n— 3)! solutions (codimensional singularity will bring degeneration).
@ KLT orthogonality of solutions to scattering equations.

Where,
1
V(w) = ,
() (01 = 0u@))(0w@2) = 0w@))  (Tu(n—2) = Tn-1)(0n-1 — on)(0n — 01)
U(w) = :

(01 = 0w@))(0w(2) = 0w(3)) ** (Own-2) = 0n)(0n — Tn-1)(0n-1 — 01)



CHY formalism
0000000

© CHY formalism



CHY formalism
(o] Jelee]e]e]

Bi-adjoint Scalar, YM and Einstein Gravity

The amplitudes of many QFTs (at the tree level) can be expressed by a unified formula
(Cachazo, He, Yuan, 2013).

- __dv 17 Sab
An= [ dpnTn, dun—volsum)l:[é(Z ) (6)

g
bra ab

For different theories, the integral measure is the same, differing only in the CHY
integrands Z,

@_ [_do T Sab Tr(To T2 ... o) 2=
Mo = / vol SL(2,C) Ué(; 0a — Ub) ((01 —02)--- (00 — 01) i ) (PFV)
(7)

For Scalar, s =0,
1 D\ - e
rod . _§au¢ljau¢l,/ . afl,J,K 77J7R¢I,I¢J,J¢K,K 8)
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Bi-adjoint Scalar, YM and Einstein Gravity

The amplitudes of many QFTs (at the tree level) can be expressed by a unified formula
(Cachazo, He, Yuan, 2013).

_ __dv 1/ Sab
Ay = /dunIn, dip = VoBL(2.T) 1:[ 5<Z ) (6)

g
bta ab

For different theories, the integral measure is the same, differing only in the CHY
integrands Z,

(s) _ Tr( TaiTa... Ta,,) 2—s ) .
M _/voISL2(C Hdzga_ab ( +...)  (PfV)

(01 —02)(op —01)
(7)

For Scalar, s =0, ,

10}
Loy ucy = Cum)Cuqiy (8)
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Bi-adjoint Scalar, YM and Einstein Gravity

The amplitudes of many QFTs (at the tree level) can be expressed by a unified formula
(Cachazo, He, Yuan, 2013).

- __dv Sab
An= [ dpnTn, dun—volsum)l:[é(Z ) (6)

g
bra ab

For different theories, the integral measure is the same, differing only in the CHY
integrands Z,

@_ [_do T Sab Tr(To T2 ... o) 2=
Mo = / vol SL(2,C) Ué(; 0a — Ub) ((01 —02)--- (00 — 01) i ) (PFV)
(7)

Where

CU(N) = Z tl“( Ta(l) TO‘(Z) L. Ta(”)) PTn(Oé)
a€ESn/Zn
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Bi-adjoint Scalar, YM and Einstein Gravity

The amplitudes of many QFTs (at the tree level) can be expressed by a unified formula
(Cachazo, He, Yuan, 2013).

N i d"o / Sab
An= [ dpnZn, dun—volsum)l:[é(Z ) (6)

g
bta ab

For different theories, the integral measure is the same, differing only in the CHY
integrands Z,

@_ [_do T Sab Tr(To T2 ... o) 2=
Mo = / vol SL(2,C) Ué(; 0a — Ub) ((01 —02)--- (00 — 01) i ) (PFV)
(7)

Where,
1

Ta(1)(2)%a(2),a(3) =" Tan) (1)

PT,la] =
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Bi-adjoint Scalar, YM and Einstein Gravity

The amplitudes of many QFTs (at the tree level) can be expressed by a unified formula
(Cachazo, He, Yuan, 2013).

_ _ d"oc , Sab
Ay = /dunIn, dip = VoSL(2.0) 1:[ 5<Z ) (6)

ag
bta ab

For different theories, the integral measure is the same, differing only in the CHY
integrands Z,

(s) _ Sab Tr(TaT22. .. Tan) 2—s .
M _/voISL2(C I:I‘SZga_ab)((gl_gz)...(an_al)+-~> (PF'W)
(7)

Delta functions in eq.6 totally local the integral, so we don’t need to calculate
annoying integral, we just need to solve the scattering equations.
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Bi-adjoint Scalar, YM and Einstein Gravity

The amplitudes of many QFTs (at the tree level) can be expressed by a unified formula
(Cachazo, He, Yuan, 2013).

N i d"o / Sab
An= [ dpnZn, dun—volsum)l:[é(Z ) (6)

g
bta ab

For different theories, the integral measure is the same, differing only in the CHY
integrands Z,

@_ [_do T Sab Tr(To T2 ... o) 2=
Mo = / vol SL(2,C) Ué(; 0a — Ub) ((01 —02)--- (00 — 01) i ) (PFV)
(7)

(qugqrarp)(gijajkffki)z
§ : ijk
|®par

(8)

{o}€solutions
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Bi-adjoint Scalar, YM and Einstein Gravity

For YM, s =1, (Gervais—Neveu gauge, ghost free)
—_ 1 oAV \[ U AV g2 WAV
L="Tr —EGHA,,G A" — iV2gdHAYA A, + ZA A"AA,

Iy = CaPIV({k, e, 0}) (9)
For Gravitons, s = 2, (de-Donder gauge, ghost free)
1 1
Lrg =0ahdgh®? — 9,hs,0°h*Y — 5(aah)2 + E(avhoéﬁ)2 + O (k, h*)
124 1 14
+ 0" hy, O HY + Z(aﬂh)2 — 9" hy0"h

IR = PV, PFU, (10)

We introduce \If because generally, we can contain dilatons and B-fields in GR. For
pure graviton scattering, V = V.
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Bi-adjoint Scalar, YM and Einstein Gravity

For YM, s =1,
M = C,PYV({k, €, 0})
For Gravitons, s = 2, y
IR = PV, P, (10)
Where, o
A —CT (—1)+ i
V= PV .= ~—— _Pf(v¥ 11
<C B )’ (0i — o)) Vi) (1)
and,
Sab b 283-51, b 2€a'kb b
Ap={w 270 g, dnia 2P0 {_ S
0, a=b, 0, a=b, =D cta s, a=
(12)
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More theories and their connections

. o 1 -
@ The greatest advance in A, = Z AL(z)) = Ar(zy)
scattering amplitudes in the diagrams 1
last two decades has been the

formulation of the BCFW
recursion relations, which has dlagrams I

greatly simplified the
calculations. Figure: BCFW Recursion Relations.
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@ Scattering equations are very
difficult to find all (n-3)!
solutions. In this sense, the
CHY formula doesn't bring us
a new efficient tool for
calculating amplitudes. But it
gives us a unified framework
to consider connections
between different theories.

Theory Integrand Section
Einstein gravity Pf'Y, Pf'Y, 4.5
Yang-Mills C, Pf'Y¥, 4.4.1
@ flavored in U(N) x U(N) CiCy 4.2.1
Einstein-Maxwell Pf[X, ]y P [¥,]. PEY,, 5.1.3
Einstein-Yang-Mills Cir - Ciry PfTI(h;try ..., tre) PEY, 5.2
Yang-Mills-Scalar Cyy PE[X,)s PF (W) s 5.1.1
generalized Yang-Mills-Scalar CyCyr, -+ - Crr, PfTI(g try ..., try) 5.2.4
Born-Infeld PfY, (PfA,)? 443
Dirac-Born-Infeld Pf[X,]s P [¥,] s (PFA,)? 5.1.2
extended Dirac-Born-Infeld ~ Cy, - - - Cyr, PETI(y;try ..., try) (PFA,)? 525
U(N) non-linear sigma model Cy (PfA,)? 423
special Galileon (PfA,)* 4.2.6

Figure: CHY integrands of different QFTs
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More theories and their connections

@ Scattering equations are very
difficult to find all (n-3)!
solutions. In this sense, the
CHY formula doesn't bring us
a new efficient tool for
calculating amplitudes. But it
gives us a unified framework
to consider connections
between different theories.

Connections among integrands. Compactify: —,. Squeeze: --.,. “Compact-
ify”: »- Non-Abelian: ~~~». Restrict to single trace: .

Figure: Theory Web.
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KLT double copy

Gravity = YM?/¢3,

_1)n An(ly ﬁ2,n—17 n)g[ﬁzn—l‘VZ,n—l]ann(na’72,n—1, 1)
( ) Z S23...n

M, = (13)

Byy

Where, KLT kernel S[a|3] can be constructed by double partial amplitudes of ¢3
theory:

i=2 j=2

Slalf] = 1:[ (Sl,a(,-) + ZH(Q(j)7a(i))65a(j),a(i)) = m(a|B)™ (14)

So, we divide YM? by ¢3.
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KLT relation

KLT othogonality eq.5 can be rewrited as,

bur= Y [ duPT@PT()S[3] (15)
BES,_3

So if we have a theory M, whose CHY integrand is 7 = ZLTZR. Then we can define
two partial amplitudes ML and MF, whose CHY integrands are Z- - PT and Z% - PT,

respectively.

Which gives a general KLT relation,!

M, = ML @k ME (16)

The CHY formalism enables us to gain insights that would otherwise be difficult to
discern from the Lagrangian.
D"KLT" suffix means we need a KLT kernel.
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Thank you!
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